0000000000856294
AUTHOR
C.s. Ozben
A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.
Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons
A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190 GeV the measured polarisation is P-mu = -0.80 +/- 0.03 (stat.) +/- 0.02 (syst.) and P-mu = - 0.797 +/- 0.011 (stat.) +/- 0.012 (syst.), respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum. (C) 2000 Elsevier Science B.V. All rights reserved.
The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering
We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …