0000000000858119
AUTHOR
Andrey Tyukin
Scavenger – A Framework for Efficient Evaluation of Dynamic and Modular Algorithms
Machine Learning methods and algorithms are often highly modular in the sense that they rely on a large number of subalgorithms that are in principle interchangeable. For example, it is often possible to use various kinds of pre- and post-processing and various base classifiers or regressors as components of the same modular approach. We propose a framework, called Scavenger, that allows evaluating whole families of conceptually similar algorithms efficiently. The algorithms are represented as compositions, couplings and products of atomic subalgorithms. This allows partial results to be cached and shared between different instances of a modular algorithm, so that potentially expensive part…
BMaD – A Boolean Matrix Decomposition Framework
Boolean matrix decomposition is a method to obtain a compressed representation of a matrix with Boolean entries. We present a modular framework that unifies several Boolean matrix decomposition algorithms, and provide methods to evaluate their performance. The main advantages of the framework are its modular approach and hence the flexible combination of the steps of a Boolean matrix decomposition and the capability of handling missing values. The framework is licensed under the GPLv3 and can be downloaded freely at http://projects.informatik.uni-mainz.de/bmad.
A Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders
Multi-label classification targets the prediction of multiple interdependent and non-exclusive binary target variables. Transformation-based algorithms transform the data set such that regular single-label algorithms can be applied to the problem. A special type of transformation-based classifiers are label compression methods, which compress the labels and then mostly use single label classifiers to predict the compressed labels. So far, there are no compression-based algorithms that follow a problem transformation approach and address non-linear dependencies in the labels. In this paper, we propose a new algorithm, called Maniac (Multi-lAbel classificatioN usIng AutoenCoders), which extra…