0000000000860148
AUTHOR
Bimal Bhattarai
Indoor Space Classification Using Cascaded LSTM
Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Indoor space classification is an important part of localization that helps in precise location extraction, which has been extensively utilized in industrial and domestic domain. There are various approaches that employ Bluetooth Low Energy (BLE), Wi-Fi, magnetic field, object detecti…
Word-level human interpretable scoring mechanism for novel text detection using Tsetlin Machines
Recent research in novelty detection focuses mainly on document-level classification, employing deep neural networks (DNN). However, the black-box nature of DNNs makes it difficult to extract an exact explanation of why a document is considered novel. In addition, dealing with novelty at the word-level is crucial to provide a more fine-grained analysis than what is available at the document level. In this work, we propose a Tsetlin machine (TM)-based architecture for scoring individual words according to their contribution to novelty. Our approach encodes a description of the novel documents using the linguistic patterns captured by TM clauses. We then adopt this description to measure how …
Measuring the Novelty of Natural Language Text Using the Conjunctive Clauses of a Tsetlin Machine Text Classifier
Most supervised text classification approaches assume a closed world, counting on all classes being present in the data at training time. This assumption can lead to unpredictable behaviour during operation, whenever novel, previously unseen, classes appear. Although deep learning-based methods have recently been used for novelty detection, they are challenging to interpret due to their black-box nature. This paper addresses \emph{interpretable} open-world text classification, where the trained classifier must deal with novel classes during operation. To this end, we extend the recently introduced Tsetlin machine (TM) with a novelty scoring mechanism. The mechanism uses the conjunctive clau…
Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling
Using logical clauses to represent patterns, Tsetlin Machines (TMs) have recently obtained competitive performance in terms of accuracy, memory footprint, energy, and learning speed on several benchmarks. Each TM clause votes for or against a particular class, with classification resolved using a majority vote. While the evaluation of clauses is fast, being based on binary operators, the voting makes it necessary to synchronize the clause evaluation, impeding parallelization. In this paper, we propose a novel scheme for desynchronizing the evaluation of clauses, eliminating the voting bottleneck. In brief, every clause runs in its own thread for massive native parallelism. For each training…
Explainable Tsetlin Machine framework for fake news detection with credibility score assessment
The proliferation of fake news, i.e., news intentionally spread for misinformation, poses a threat to individuals and society. Despite various fact-checking websites such as PolitiFact, robust detection techniques are required to deal with the increase in fake news. Several deep learning models show promising results for fake news classification, however, their black-box nature makes it difficult to explain their classification decisions and quality-assure the models. We here address this problem by proposing a novel interpretable fake news detection framework based on the recently introduced Tsetlin Machine (TM). In brief, we utilize the conjunctive clauses of the TM to capture lexical and…
Verifying Properties of Tsetlin Machines
Tsetlin Machines (TsMs) are a promising and interpretable machine learning method which can be applied for various classification tasks. We present an exact encoding of TsMs into propositional logic and formally verify properties of TsMs using a SAT solver. In particular, we introduce in this work a notion of similarity of machine learning models and apply our notion to check for similarity of TsMs. We also consider notions of robustness and equivalence from the literature and adapt them for TsMs. Then, we show the correctness of our encoding and provide results for the properties: adversarial robustness, equivalence, and similarity of TsMs. In our experiments, we employ the MNIST and IMDB …
Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling
Using logical clauses to represent patterns, Tsetlin Machine (TM) have recently obtained competitive performance in terms of accuracy, memory footprint, energy, and learning speed on several benchmarks. Each TM clause votes for or against a particular class, with classification resolved using a majority vote. While the evaluation of clauses is fast, being based on binary operators, the voting makes it necessary to synchronize the clause evaluation, impeding parallelization. In this paper, we propose a novel scheme for desynchronizing the evaluation of clauses, eliminating the voting bottleneck. In brief, every clause runs in its own thread for massive native parallelism. For each training e…