0000000000860837

AUTHOR

E. P. Simoncelli

showing 1 related works from this author

End-to-end Optimized Image Compression

2016

We describe an image compression method, consisting of a nonlinear analysis transformation, a uniform quantizer, and a nonlinear synthesis transformation. The transforms are constructed in three successive stages of convolutional linear filters and nonlinear activation functions. Unlike most convolutional neural networks, the joint nonlinearity is chosen to implement a form of local gain control, inspired by those used to model biological neurons. Using a variant of stochastic gradient descent, we jointly optimize the entire model for rate-distortion performance over a database of training images, introducing a continuous proxy for the discontinuous loss function arising from the quantizer.…

FOS: Computer and information sciencesComputer Science - Information TheoryComputer Vision and Pattern Recognition (cs.CV)Information Theory (cs.IT)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONData_CODINGANDINFORMATIONTHEORY
researchProduct