0000000000861564
AUTHOR
Jurgen Kosel
Magnon mode selective spin transport in compensated ferrimagnets
We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a non-monotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not …
High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments
Flexible Magnetoresistive Sensors for Guiding Cardiac Catheters
Cardiac catheterization is a procedure, in which a long thin tube that is called a “catheter” is inserted into the heart for diagnosis or treatment. Due to the excessive use of x-ray doses and contrast agents for orientation detection during the surgery, there is a need to find a better alternative. This paper presents magnetic tunnel junction sensors on flexible Si attached to the catheter tip for orientation detection during minimally invasive surgeries. Due to the small size of catheters, extreme minimization in terms of size, weight, thickness and power consumption is needed for any device implemented on it. The fabricated flexible magnetic tunnel junctions fulfill those requirements wi…
Flexible MgO-Based Magnetic Tunnel Junctions on Silicon Substrate
Flexible electronic devices are emerging in many areas, providing novel features and creating new applications [1]. Due to their ubiquitous utilization, flexible magnetic sensors [2] play a critical part in this development. In particular, magnetic tunnel junctions (MTJs) are of great interest, because of advantages like low power consumption or high sensitivity. We report the development of flexible MTJs on a silicon substrate fabricated by a low-cost batch process [3]. Thereby, conventionally fabricated MTJ devices are transformed into flexible ones by thinning down the silicon wafer from 500 μm to 5 μm. This process leads to thin, bendable silicon devices, while maintaining their origina…