0000000000861903

AUTHOR

Virginija Vitola

showing 9 related works from this author

Gallium Concentration Optimisation of Gallium Doped Zinc Oxide for Improvement of Optical Properties

2021

The research has been supported by project ERA.NET RUS_ST2017-05 (Latvia) and No. 18-52-76002 (Russia). The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Hori-zon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming-Phase2 under grant agreement No. 739508, project CAMART².

Luminescencezno:gaQC1-999Inorganic chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyZincScintillator010402 general chemistry01 natural sciencesoptimised concentration:NATURAL SCIENCES:Physics [Research Subject Categories]luminescenceGalliumPhysicsDopingGeneral EngineeringGa [ZnO]021001 nanoscience & nanotechnology0104 chemical sciencesscintillatorchemistrymicrowave-assisted solvothermal synthesis0210 nano-technologyLuminescenceLatvian Journal of Physics and Technical Sciences
researchProduct

The boron effect on low temperature luminescence of SrAl2O4:Eu, Dy

2020

V.V. acknowledges the financial support of ERDF PostDoc project No. 1.1.1.2/VIAA/3/19/440 (University of Latvia Institute of Solid State Physics, Latvia) and K.S., I.B., A.Z., D.M. and K.L. acknowledge the financial support of ERDF, European-Union Project No. 1.1.1.1/16/A/182 (University of Latvia Institute of Solid State Physics, Latvia).

Materials sciencePersistent luminescenceAnalytical chemistrychemistry.chemical_element02 engineering and technologyTrapping7. Clean energy01 natural sciencesPersistent luminescence0103 physical sciencesMaterials Chemistry:NATURAL SCIENCES:Physics [Research Subject Categories]BoronQuantum tunnelling010302 applied physicsLong afterglowProcess Chemistry and Technology021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAfterglowBoron concentrationchemistryCeramics and Composites0210 nano-technologyLuminescenceIntensity (heat transfer)
researchProduct

The search for defects in undoped SrAl2O4 material

2019

This research project was supported financially by ERDF Project No: Nr.1.1.1.1/16/A/182 .

Materials sciencePersistent luminescenceCharge Carrier trappingPhosphor02 engineering and technology010402 general chemistry01 natural sciencesInorganic ChemistryPersistent luminescence:NATURAL SCIENCES:Physics [Research Subject Categories]Emission spectrumIrradiationElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyCondensed matter physicsDopantOrganic ChemistryDoping021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsAfterglowUndoped strontium aluminate0210 nano-technologyLuminescenceOptical Materials
researchProduct

Low temperature afterglow from SrAl 2 O 4 : Eu, Dy, B containing glass

2020

V.V. acknowledges the financial support of ERDF PostDoc project No. 1.1.1.2/VIAA/3/19/440 (University of Latvia Institute of Solid State Physics, Latvia) and LP the Academy of Finland (Flagship Programme, Photonics Research and Innovation PREIN 320165 and Academy Project -326418) for the financial support. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01- 2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART 2 .

Materials sciencePersistent luminescenceCenter of excellence02 engineering and technology114 Physical sciences7. Clean energy01 natural sciences0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceGeneral Materials ScienceEuropean unionmedia_common010302 applied physicsHorizon (archaeology)Mechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsLow temperature applicationsAfterglowPhosphate glassMechanics of Materials216 Materials engineering0210 nano-technology
researchProduct

Low Temperature Afterglow from SrAl <sub>2</sub>O <sub>4</sub>: EU, Dy, B Containing Glass

2020

SrAl2O4: Eu, Dy, B particles were added in a phosphate glass (90NaPO3-10NaF (in mol%)) using the direct doping method. For the first time, the composition of the particles prior to and after embedding them in the glass was analysed using EPMA analysis. Boron was found to be incorporated in already distorted surroundings creating new trapping centers in the particles which are thought to be favourable for the tunnelling process and so for the afterglow at 10K. Despite the partial decomposition of the particles, the glass exhibit afterglow at low temperature confirming to be promising materials for low temperature applications.

Materials sciencechemistryDopingAnalytical chemistrychemistry.chemical_elementPartial decompositionTrappingElectron microprobeBoronQuantum tunnellingPhosphate glassAfterglowSSRN Electronic Journal
researchProduct

Re-Evaluation of Chromium Doped Alumina for Dosimetric Applications

2021

Financial support provided by Scientific Research “Luminescence Mechanisms and Dosimeter Properties in Prospective Nitrides and Oxides Using TL and OSL Methods” LZP FLPP No. LZP-2018/1-0361 implemented at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².

dosimetryPhysicsQC1-999AluminaGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEngineering physicsaluminaal2o3:cr3. Good health030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instancesol-gelCr [Al2O3]chromiumEuropean union0210 nano-technologymedia_commonLatvian Journal of Physics and Technical Sciences
researchProduct

Recent progress in understanding the persistent luminescence in SrAl 2 O 4 :Eu,Dy

2019

Ever since the discovery of SrAl2O4:Eu,Dy persistent afterglow material, that can intensively glow up to 20 h, the mechanism of long-lasting luminescence has been a popular area of research. The re...

010302 applied physicsMaterials scienceMechanical EngineeringStrontium aluminate02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsPhotochemistry01 natural sciences3. Good healthAfterglowchemistry.chemical_compoundPersistent luminescencechemistryMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyLuminescenceMechanism (sociology)Materials Science and Technology
researchProduct

Production of Phosphorescent Coatings on 6082 Aluminum Using Sr0.95Eu0.02Dy0.03Al2O4-δ Powder and Plasma Electrolytic Oxidation

2019

In this study, a new approach for producing phosphorescent aluminum coatings was studied. Using the plasma electrolytic oxidation (PEO) process, a porous oxide coating was produced on the Al6082 aluminum alloy substrate. Afterwards, activated strontium aluminate (SrAl2O4: Eu2+, Dy3+) powder was filled into the cavities and pores of the PEO coating, which resulted in a surface that exhibits long-lasting luminescence. The structural and optical properties were studied using XRD, SEM, and photoluminescence measurements. It was found that the treatment time affects the morphology of the coating, which influences the amount of strontium aluminate powder that can be incorporated into the coating …

inorganic chemicalsMaterials scienceMorphology (linguistics)Photoluminescencechemistry.chemical_element02 engineering and technologyengineering.material01 natural scienceschemistry.chemical_compoundCoatingPlasma electrolytic oxidation (PEO)Aluminium0103 physical sciencesLuminescent coatings:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Chemistry010302 applied physicsAluminum 6082aluminum 6082Phosphorescencetechnology industry and agricultureStrontium aluminateSurfaces and InterfacesPlasma electrolytic oxidationplasma electrolytic oxidation (PEO)021001 nanoscience & nanotechnologySurfaces Coatings and Filmsphosphorescenceluminescent coatingschemistryChemical engineeringengineering0210 nano-technologyLuminescencePhosphorescenceCoatings
researchProduct

Recent progress in understanding the persistent luminescence in SrAl2O4:Eu,Dy

2019

This work was conducted with the funding of Scientific Research Project for Students and Young Researchers realised at the Institute of Solid State Physics, University of Latvia [SJZ/2018/2].

Persistent luminescencestrontium aluminate:NATURAL SCIENCES:Physics [Research Subject Categories]long afterglowluminescence mechanism
researchProduct