0000000000862642

AUTHOR

Elisa Nespoli

Multiwavelength study of accretion-powered pulsars

My PhD thesis consists in a multi-frequency approach to High Mass X-ray Binaries (HMXBs), using infrared and X-ray data. On one side, my research project aimed at the identification and characterization of IR counterparts to obscured HMXBs in the Scutum and Norma inner galactic arms. The identification of optical/IR counterparts to HMXBs is a necessary step to undertake detailed studies of these systems. With data limited to the high-energy range, the understanding of their complex structure and dynamics cannot be complete. In the last years, INTEGRAL has revealed the presence of an important population of heavily absorbed HMXBs in the Scutum and Norma regions, virtually unobservable below …

research product

Patterns of variability in Be/X-ray pulsars during giant outbursts

The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous studies on the correlated timing and spectral variability of these systems, very little work has been done on high-mass X-ray binaries, the third major type of X-ray binaries. The main goal of this work is to investigate whether Be accreting X-ray pulsars display source states and characterise those states through their spectral and timing properties. We have made a systematic study of the power spectra, energy spectra and X-ray hardness-intensity d…

research product