Global Long-Term Brightness Temperature Record from L-Band SMOS and Smap Observations
Passive microwave remote sensing observations at L-band provide key and global information on surface soil moisture (SM) and vegetation optical depth (VOD), which are related to the Earth water and carbon cycles. Only two spaceborne L-band sensors are currently operating: SMOS, launched end of 2009 and thus providing now a 11-year global dataset and SMAP, launched beginning of 2015. To ensure SM and L-VOD data continuity in the event of failure of one of the space-borne SMOS or SMAP sensors, we developed a consistent brightness temperature (TB) record by first producing consistent 40° SMOS and SMAP TB estimates based on SMOS-IC and SMAP enhanced data resp., and then fusing them via linear f…
Alternate Inrae-Bordeaux VOD Indices from SMOS, AMSR2 and ASCAT: Overview of Recent Developments
International audience; Vegetation optical depth (VOD) is used to parameterize microwave extinction effects within the vegetation layer. Many studies have showed VOD presents interesting features for applications in ecology, water and carbon cycles, and VOD is only marginally impacted by signal disturbances and artefacts from atmospheric, cloud and sun illumination effects. As soil moisture (and not VOD) has generally been the main factor of interest in retrieval studies from microwave observations, there is room for improvement in the retrieved VOD products. In this context, INRAE Bordeaux recently developed alternate VOD products from the SMOS, AMSR2 and ASCAT sensors, by addressing speci…
Towards a novel approach for Sentinel-3 synergistic OLCI/SLSTR cloud and cloud shadow detection based on stereo cloud-top height estimation
Abstract Sentinel-3 is an Earth observation satellite constellation launched by the European Space Agency. Each satellite carries two optical multispectral instruments: the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). OLCI and SLSTR sensors produce images covering the visible and infrared spectrum that can be collocated in order to generate synergistic products. In Earth observation, a particular weakness of optical sensors is their high sensitivity to clouds and their shadows. An incorrect cloud and cloud shadow detection leads to mistakes in both land and ocean retrievals of biophysical parameters. In order to exploit both OLCI and S…
Interannual Variability of Biomass (SMOS Vegetation Optical Depth) Over the Contiguous United States
Interannual variability in biomass represented by SMOS vegetation optical depth (VOD) and precipitation was assessed over the Contiguous United States. The greatest interannual variability in both VOD and precipitation occurred in shrubs and herbaceous (grasslands), with forests the least variable. At a continental scale, VOD was strongly correlated with annual precipitation. Results showed a significant correlation coefficient (∼ 0.93) between interannual variability of precipitation and biomass, indicating that the interannual variability of precipitation could be a good predictor of the interannual variability of biomass.
Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations
Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…
Global Scale IB AMSR2 Vegetation Optical Depth at X-Band
Vegetation Optical Depth (VOD) plays an increasingly important role in studying global carbon, water and energy transformation [1], [2]. This study explores the performance of the X-MEB (X-band microwave emission of the biosphere) model at global scale. Similar to the L-MEB model, the X-MEB model, built by INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement) Bordeaux, aims to retrieve VOD (referred to as IB X-VOD) at X-band. To avoid the ill-posed problem caused by retrieving two parameters of interest (soil moisture (SM) and VOD) from mono-angular and dual-polarized observations (AMSR2), which are strongly correlated, we used the ERA5 SM product as a…