0000000000866888
AUTHOR
Anna Ebering
showing 3 related works from this author
Time to activin on pathogenic T cells
2020
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic t…
Unraveling the T-B tangle in anti-CD20 multiple sclerosis therapy.
2019
Significance Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. CD8+ T cells have been strongly implicated in MS pathogenesis, but it is unclear whether myelin is a CD8+ T cell autoantigenic target in MS. This study demonstrated that while myelin-specific CD8+ T cells are present at similar frequencies in untreated MS patients and healthy subjects, the proportion of memory and CD20-expressing myelin-specific CD8+ T cells was increased in MS patients, suggesting prior antigen encounter. This activated phenotype was reversible as the memory and CD20-expressing populations of certain myelin-specific CD8+ T cells were reduced following anti-CD20 trea…
NF-κB inducing kinase (NIK) is an essential post-transcriptional regulator of T-cell activation affecting F-actin dynamics and TCR signaling
2018
NF-κB inducing kinase (NIK) is the key protein of the non-canonical NF-κB pathway and is important for the development of lymph nodes and other secondary immune organs. We elucidated the specific role of NIK in T cells using T-cell specific NIK-deficient (NIKΔT) mice. Despite showing normal development of lymphoid organs, NIKΔT mice were resistant to induction of CNS autoimmunity. T cells from NIKΔT mice were deficient in late priming, failed to up-regulate T-bet and to transmigrate into the CNS. Proteomic analysis of activated NIK-/- T cells showed de-regulated expression of proteins involved in the formation of the immunological synapse: in particular, proteins involved in cytoskeleton dy…