0000000000866913

AUTHOR

Miguel G. Folgado

showing 5 related works from this author

Probing the sterile neutrino portal to Dark Matter with γ rays

2018

Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center $\gamma$-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center $\gamma$-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 …

PhysicsSterile neutrino010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterFluxAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGalaxyDark matter haloHigh Energy Physics - Phenomenology0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsAstrophysics::Galaxy AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions

2020

We revisit the case of scalar dark matter interacting just gravitationally with the Standard Model (SM) particles in an extra-dimensional Randall-Sundrum scenario. We assume that both, the dark matter and the Standard Model, are localized in the TeV brane and only interact via gravitational mediators, namely the graviton Kaluza-Klein modes and the radion. We analyze in detail the dark matter annihilation channel into two on-shell KK-gravitons, and contrary to previous studies which overlooked this process, we find that it is possible to obtain the correct relic abundance for dark matter masses in the range [1, 10] TeV even after taking into account the strong bounds from LHC Run II. We also…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsParticle physicsPhysics::General PhysicsLarge Hadron Collider010308 nuclear & particles physicsDark matterScalar (mathematics)GravitonFOS: Physical sciences01 natural sciencesStandard ModelGravitationExtra dimensionsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhenomenology of Field Theories in Higher Dimensionslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityBrane010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Spin-dependence of gravity-mediated dark matter in warped extra-dimensions

2021

We study the spin-dependence of Dark Matter (DM) particles which interact gravitationally with the Standard Model (SM) in an extra-dimensional Randall-Sundrum scenario. We assume that both the Dark Matter and the Standard Model are confined to the TeV (Infra-red) brane and only interact via gravitational mediators, namely Kaluza-Klein gravitons and the radion. We analyze the different DM annihilation channels and find that it is possible to achieve the presently observed relic abundance of Dark Matter, $\Omega_{\rm DM}$, within the freeze-out mechanism for DM particles of spin 0, 1/2 and 1. We study the region of the model parameter space for which $\Omega_{\rm DM}$ is achieved and compare …

Particle physicsPhysics and Astronomy (miscellaneous)Dark matterScalar (mathematics)FOS: Physical scienceslcsh:Astrophysics01 natural sciences7. Clean energyStandard ModelVector bosonHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Spin-½High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGravitonHigh Energy Physics - PhenomenologyExtra dimensionslcsh:QC770-798DilatonAstrophysics - High Energy Astrophysical PhenomenaThe European Physical Journal C
researchProduct

Gravity-mediated dark matter in clockwork/linear dilaton extra-dimensions

2020

We study for the first time the possibility that Dark Matter (represented by particles with spin $0,1/2$ or $1$) interacts gravitationally with Standard Model particles in an extra-dimensional Clockwork/Linear Dilaton model. We assume that both, the Dark Matter and the Standard Model, are localized in the IR-brane and only interact via gravitational mediators, namely the Kaluza-Klein (KK) graviton and the radion/KK-dilaton modes. We analyse in detail the Dark Matter annihilation channel into Standard Model particles and into two on-shell Kaluza-Klein towers (either two KK-gravitons, or two radion/KK-dilatons, or one of each), finding that it is possible to obtain the observed relic abundanc…

Nuclear and High Energy PhysicsParticle physicsDark matterFOS: Physical sciencesStrings and branes phenomenology01 natural sciencesStandard ModelGravitationHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Phenomenology of Field Theories in Higher Dimensions0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsSpin (physics)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsGravitonHigh Energy Physics - PhenomenologyExtra dimensionslcsh:QC770-798DilatonAstrophysics - High Energy Astrophysical PhenomenaJournal of High Energy Physics
researchProduct

Kaluza-Klein FIMP dark matter in warped extra-dimensions

2020

We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectKaluza–Klein theoryDark matterFOS: Physical sciences01 natural scienceslaw.inventionStandard ModelGravitationHigh Energy Physics - Phenomenology (hep-ph)law0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsCollidermedia_commonPhysics010308 nuclear & particles physicsGravitonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyExtra dimensionsBeyond Standard Modellcsh:QC770-798Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct