Dynamic Functional Connectivity Captures Individuals’ Unique Brain Signatures
Recent neuroimaging evidence suggest that there exists a unique individual-specific functional connectivity (FC) pattern consistent across tasks. The objective of our study is to utilize FC patterns to identify an individual using a supervised machine learning approach. To this end, we use two previously published data sets that comprises resting-state and task-based fMRI responses. We use static FC measures as input to a linear classifier to evaluate its performance. We additionally extend this analysis to capture dynamic FC using two approaches: the common sliding window approach and the more recent phase synchrony-based measure. We found that the classification models using dynamic FC pa…