0000000000868711

AUTHOR

Andrea Pozzer

Global health burden of PM2.5, black and organic carbon aerosols

research product

Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC

Abstract This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties with a prognostic cloud droplet nucleation scheme. We present modeled global distributions of cloud condensation nuclei (CCN) number concentrations and CCN activation rates, together with the effective hygroscopicity parameter κ, to describe the aerosol chemical composition effect on CCN activation. Large particles can easily activate into cloud droplets, even at low κ values due to the dominant size effect in cloud droplet formation. Small particles are less efficiently activated as CCN, and are more sensitive to aerosol composition and supersaturation. Since the dominant fraction of small pa…

research product

Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO2 measurements

We present high spatial resolution (up to 2.2×2.2 km2) simulations focussed over south-west Germany using the online coupled regional atmospheric chemistry model system MECO(n) (MESSy-fied ECHAM and COSMO models nested n times). Numerical simulation of nitrogen dioxide (NO2) surface volume mixing ratios (VMRs) are compared to in situ measurements from a network with 193 locations including background, traffic-adjacent and industrial stations to investigate the model's performance in simulating the spatial and temporal variability of short-lived chemical species. We show that the use of a high-resolution and up-to-date emission inventory is crucial for reproducing the spatial variability and…

research product