0000000000868939

AUTHOR

L. ŠAmaj

showing 2 related works from this author

Phase Transitions in Multicomponent Widom-Rowlinson Models

1995

We use Monte Carlo techniques to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. For M between two and six there is a direct transition from the gas phase at z z d (M). For M ≥ 7 there is an intermediate ordered phase in which the even (or odd) sublattice is occupied preferentially by particles chosen at random from any of the species. The existence of such an intermediate phase was proven earlier for M ≥ M 0, M 0 very large. Exact calculations on the Bethe lattice give M0 = 4.

PhysicsPhase transitionCondensed matter physicsBethe latticePhase (matter)Monte Carlo methodFugacitySquare latticek-nearest neighbors algorithmPhase diagram
researchProduct

Ordering and demixing transitions in multicomponent Widom-Rowlinson models.

1995

We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not …

Statistics::TheoryStatistics::ApplicationsBethe latticeCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Coordination numberFOS: Physical sciencesRenormalization groupLambdaSquare latticeIsing modelCondensed Matter - Statistical MechanicsPotts modelMathematicsPhase diagramPhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
researchProduct