Automatic Evaluation of Histological Prognostic Factors Using Two Consecutive Convolutional Neural Networks on Kidney Samples
BACKGROUND AND OBJECTIVES: The prognosis of patients undergoing kidney tumor resection or kidney donation is linked to many histologic criteria. These criteria notably include glomerular density, glomerular volume, vascular luminal stenosis, and severity of interstitial fibrosis/tubular atrophy. Automated measurements through a deep-learning approach could save time and provide more precise data. This work aimed to develop a free tool to automatically obtain kidney histologic prognostic features. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: In total, 241 samples of healthy kidney tissue were split into three independent cohorts. The “Training” cohort (n=65) was used to train two convoluti…