0000000000870090

AUTHOR

R. Meissner

showing 4 related works from this author

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

2015

We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…

acceleration of particles; astroparticle physicsNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Upper LimitAstronomyCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFieldCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias Físicas01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareSettore FIS/05 - Astronomia e AstrofisicaObservatorySpectrum0103 physical sciencesacceleration of particles astroparticle physicsSurface Detector010303 astronomy & astrophysicsacceleration of particleAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleArrayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]astroparticle physicAstronomy and AstrophysicsASTROFÍSICANucleiSpace and Planetary Scienceastroparticle physicsExperimental High Energy Physicsacceleration of particles; astroparticle physics; Nuclear and High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCatalogSkyAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

2016

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…

Ciencias FísicasAstronomyGeneral Physics and Astronomyultra-high energy cosmic raysAstrophysics01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)CODALEMAObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)Radio detectorTUNKA-REXSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsRadio TechniqueFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysicsradio emissionCIENCIAS NATURALES Y EXACTASRadio wave[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy (all)0103 physical sciencesextensive air showersHigh Energy Physicsultra-high energy cosmic rays extensive air showers radio emission010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger Observatory010308 nuclear & particles physicsRadiant energyFísicaLOFAR//purl.org/becyt/ford/1.3 [https]LOFARASTROFÍSICASIMULATIONSComputational physicsAstronomíaCOREASExperimental High Energy PhysicsARRAYEMISSION SIMULATIONS LOFAR.EMISSION
researchProduct

Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

2016

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…

Physics - Instrumentation and DetectorsAutomatic dependent surveillance-broadcastComputer scienceCiencias FísicasAstronomyDetector alignment and calibration methods (lasers sources particle-beams)Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors01 natural sciencesTiming detectorsSynchronizationHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Sine wave[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsTransmitterDetectorSettore FIS/01 - Fisica Sperimentaleparticle-beams)Instrumentation and Detectors (physics.ins-det)Pattern recognition cluster finding calibration and fitting methodGlobal Positioning SystemComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCIENCIAS NATURALES Y EXACTASsourcesReal-time computingFOS: Physical sciencesCalibration and fitting methodClustersPattern recognition0103 physical sciencesCalibrationHigh Energy Physics010306 general physicsCiencias ExactasCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryCluster findingFísicaAstroparticles//purl.org/becyt/ford/1.3 [https]PhaserAstronomíaDetector alignment and calibration methods (lasersTiming detectorPierre AugerExperimental High Energy PhysicsRECONHECIMENTO DE PADRÕESCalibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors; Instrumentation; Mathematical PhysicsbusinessJournal of Instrumentation
researchProduct