6533b873fe1ef96bd12d4d07

RESEARCH PRODUCT

Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

The Pierre Auger CollaborationA. AabP. AbreuM. AgliettaE. J. AhnI. Al SamaraiI. F. M. AlbuquerqueI. AllekotteP. AllisonA. AlmelaJ. Alvarez CastilloJ. Alvarez-muñizR. Alves BatistaM. AmbrosioA. AminaeiG. A. AnastasiL. AnchordoquiS. AndringaC. AramoF. ArquerosN. ArseneH. AsoreyP. AssisJ. AublinG. AvilaN. AwalA. M. BadescuC. BausJ. J. BeattyK. H. BeckerJ. A. BellidoC. BeratM. E. BertainaX. BertouP. L. BiermannP. BilloirS. G. BlaessA. BlancoM. BlancoJ. BlazekC. BleveH. BlümerM. BoháčováD. BoncioliC. BonifaziN. BorodaiJ. BrackI. BrancusT. BretzA. BridgemanP. BrogueiraP. BuchholzA. BuenoS. BuitinkM. BuscemiK. S. Caballero-moraB. CaccianigaL. CaccianigaM. CandussoL. CarameteR. CarusoA. CastellinaG. CataldiL. CazonR. CesterA. G. ChavezA. ChiavassaJ. A. ChinellatoJ. ChudobaM. CilmoR. W. ClayG. CoccioloR. ColalilloA. ColemanL. CollicaM. R. ColucciaR. ConceiçãoF. ContrerasM. J. CooperA. CordierS. CoutuC. E. CovaultJ. CroninR. DallierB. DanielS. DassoK. DaumillerB. R. DawsonR. M. AlmeidaS. J. JongG. MauroJ. R. T. Mello NetoI. MitriJ. OliveiraV. SouzaL. Del PeralO. DelignyN. DhitalC. Di GiulioA. Di MatteoJ. C. DiazM. L. Díaz CastroF. DiogoC. DobrigkeitW. DoctersJ. C. D OlivoA. DorofeevQ. Dorosti HasankiadehR. C. Dos AnjosM. T. DovaJ. EbrR. EngelM. ErdmannM. ErfaniC. O. EscobarJ. EserJ. EspadanalA. EtchegoyenH. FalckeK. FangG. FarrarA. C. FauthN. FazziniA. P. FergusonB. FickJ. M. FigueiraA. FilevichA. FilipčičO. FratuM. M. FreireT. FujiiB. GarcíaD. García-gámezD. Garcia-pintoF. GateH. GemmekeA. Gherghel-lascuP. L. GhiaU. GiaccariM. GiammarchiM. GillerD. GłasC. GlaserH. GlassG. GolupM. Gómez BerissoP. F. Gómez VitaleN. GonzálezB. GookinJ. GordonA. GorgiP. GorhamP. GouffonN. GriffithA. F. GrilloT. D. GrubbF. GuarinoG. P. GuedesM. R. HampelP. HansenD. HarariT. A. HarrisonS. HartmannJ. L. HartonA. HaungsT. HebbekerD. HeckP. HeimannA. E. HervéG. C. HillC. HojvatN. HollonE. HoltP. HomolaJ. R. HörandelP. HorvathM. HrabovskýD. HuberT. HuegeA. InsoliaP. G. IsarI. JandtS. JansenC. JarneJ. A. JohnsenM. JosebachuiliA. KääpäO. KambeitzK. H. KampertP. KasperI. KatkovB. KeilhauerE. KempR. M. KieckhaferH. O. KlagesM. KleifgesJ. KleinfellerR. KrauseN. KrohmD. KuempelG. Kukec MezekN. KunkaA. W. Kuotb AwadD. LahurdA. LangL. LatronicoR. LauerM. LauscherP. LautridouS. Le CozD. LebrunP. LebrunM. A. Leigui OliveiraA. Letessier-selvonI. Lhenry-yvonK. LinkL. LopesR. LópezA. López CasadoK. LouedecA. LuceroM. MalacariM. MallamaciJ. MallerD. MandatP. MantschA. G. MariazziV. MarinI. C. MarişG. MarsellaD. MartelloH. MartinezO. Martínez BravoD. MartraireJ. J. Masías MezaH. J. MathesS. MathysJ. MatthewsJ. A. J. MatthewsG. MatthiaeD. MaurizioE. MayotteP. O. MazurC. MedinaG. Medina-tancoR. MeissnerV. B. B. MelloD. MeloA. MenshikovS. MessinaM. I. MichelettiL. MiddendorfI. A. MinayaL. MiramontiB. MitricaL. Molina-buenoS. MollerachF. MontanetC. MorelloM. MostafáC. A. MouraG. MüllerM. A. MullerS. MüllerS. NavasP. NecesalL. NellenA. NellesJ. NeuserP. H. NguyenM. Niculescu-oglinzanuM. NiechciolL. NiemietzT. NiggemannD. NitzD. NosekV. NovotnyL. NožkaL. A. NúñezL. OchiloF. OikonomouA. OlintoN. PachecoD. Pakk Selmi-deiM. PalatkaJ. PallottaP. PapenbreerG. ParenteA. ParraT. PaulM. PechJ. PękalaR. PelayoI. M. PepeL. PerroneE. PetermannC. PetersS. PetreraY. PetrovJ. PhuntsokR. PiegaiaT. PierogP. PieroniM. PimentaV. PirronelloM. PlatinoM. PlumA. PorcelliC. PorowskiR. R. PradoP. PriviteraM. ProuzaE. J. QuelS. QuerchfeldS. QuinnJ. RautenbergO. RavelD. RavignaniD. ReinertB. RevenuJ. RidkyM. RisseP. RistoriV. RiziW. Rodrigues CarvalhoJ. Rodriguez RojoM. D. Rodríguez-fríasD. RogozinJ. RosadoM. RothE. RouletA. C. RoveroS. J. SaffiA. SaftoiuH. SalazarA. SalehF. Salesa GreusG. SalinaJ. D. Sanabria GomezF. SánchezP. Sanchez-lucasE. M. SantosE. SantosF. SarazinB. SarkarR. SarmentoC. Sarmiento-canoR. SatoC. ScarsoM. SchauerV. ScheriniH. SchielerD. SchmidtO. ScholtenH. SchoorlemmerP. SchovánekF. G. SchröderA. SchulzJ. SchulzJ. SchumacherS. J. SciuttoA. SegretoM. SettimoA. ShadkamR. C. ShellardG. SiglO. SimaA. ŚmiałkowskiR. ŠmídaG. R. SnowP. SommersS. SonntagJ. SorokinR. SquartiniY. N. SrivastavaD. StancaS. StaničJ. StapletonJ. StasielakM. StephanA. StutzF. SuarezM. Suarez DuránT. SuomijärviA. D. SupanitskyM. S. SutherlandJ. SwainZ. SzadkowskiO. A. TabordaA. TapiaA. TepeV. M. TheodoroO. TibollaC. TimmermansC. J. Todero PeixotoG. TomaL. TomankovaB. ToméA. TonachiniG. Torralba ElipeD. Torres MachadoP. TravnicekM. TriniR. UlrichM. UngerM. UrbanJ. F. Valdés GaliciaI. ValiñoL. ValoreG. AarP. BodegomA. M. Den BergS. VelzenA. VlietE. VarelaB. Vargas CárdenasG. VarnerR. VasquezJ. R. VázquezR. A. VázquezD. VeberičV. VerziJ. VichaM. VidelaL. VillaseñorB. VlcekS. VorobiovH. WahlbergO. WainbergD. WalzA. A. WatsonM. WeberK. WeidenhauptA. WeindlF. WernerA. WidomL. WienckeH. WilczyńskiT. WinchenD. WittkowskiB. WundheilerS. WykesL. YangT. YapiciA. YushkovE. ZasD. ZavrtanikM. ZavrtanikA. ZepedaB. ZimmermannM. ZiolkowskiF. Zuccarello

subject

Physics - Instrumentation and DetectorsAutomatic dependent surveillance-broadcastComputer scienceCiencias FísicasAstronomyDetector alignment and calibration methods (lasers sources particle-beams)Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors01 natural sciencesTiming detectorsSynchronizationHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Sine wave[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsTransmitterDetectorSettore FIS/01 - Fisica Sperimentaleparticle-beams)Instrumentation and Detectors (physics.ins-det)Pattern recognition cluster finding calibration and fitting methodGlobal Positioning SystemComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCIENCIAS NATURALES Y EXACTASsourcesReal-time computingFOS: Physical sciencesCalibration and fitting methodClustersPattern recognition0103 physical sciencesCalibrationHigh Energy Physics010306 general physicsCiencias ExactasCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryCluster findingFísicaAstroparticles//purl.org/becyt/ford/1.3 [https]PhaserAstronomíaDetector alignment and calibration methods (lasersTiming detectorPierre AugerExperimental High Energy PhysicsRECONHECIMENTO DE PADRÕESCalibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors; Instrumentation; Mathematical Physicsbusiness

description

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

https://hdl.handle.net/2066/155774