0000000001287043

AUTHOR

S. J. Jong

showing 8 related works from this author

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

2016

Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

Hadronic interaction[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsCOLLISIONSAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesGeneral Physics and AstronomyCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Observatory0103 physical sciencesCalibrationHigh Energy PhysicsUHE Cosmic Rays010306 general physicsParticle PhysicsCosmic raysGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryEnergyMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaInteraction modelASTROFÍSICAHigh Energy Physics - Phenomenology13. Climate actionExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

2017

A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…

ultra high energy cosmic rays cosmic ray experimentsPhoton[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyHadronFluxultra high energy cosmic rays; cosmic ray experiments7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)energy: thresholdCosmic ray experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsphoton: productionconstraint: energyCOSMIC-RAYSAugerobservatoryContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenalongitudinalAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayultra high energy cosmic raysdark matterUltra high energy cosmic rays Cosmic ray experiments Astronomy and Astrophysics.Nuclear physics[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesultra high energy cosmic rays; cosmic ray experiments; Astronomy and Astrophysicscosmic radiation: UHEHigh Energy PhysicsCiencias ExactasPierre Auger ObservatorySPECTRUMhybridbackgrounddetector: surface010308 nuclear & particles physicsFísicaUltra high energy cosmic raysAstronomy and AstrophysicsASTROFÍSICAULTRA-HIGH ENERGYfluxExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experimentshadron[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Search for minimal supergravity in single-electron events with jets and large missing transverse energy inpp¯collisions ats=1.8TeV

2002

We describe a search for evidence of minimal supergravity (MSUGRA) in 92.7 pb(-1) of data collected with the D empty set detector at the Fermilab Tevatron p (p) over bar collider at roots=1.8 TeV. Events with a single electron, four or more jets, and large missing transverse energy were used in this search. The major backgrounds are from W+jets, misidentified multijet, t (t) over bar, and WW production. We observe no excess above the expected number of background events in our data. A new limit in terms of MSUGRA model parameters is obtained.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsSupergravityHigh Energy Physics::PhenomenologyTevatronElectronExpected value7. Clean energy01 natural scienceslaw.inventionStandard ModelNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsColliderPhysical Review D
researchProduct

tt¯production cross section inpp¯collisions ats=1.8TeV

2003

PhysicsNuclear and High Energy PhysicsCross section (physics)Particle physics010308 nuclear & particles physics0103 physical sciencesProduction (computer science)010306 general physics01 natural sciencesPhysical Review D
researchProduct

Multiple jet production at low transverse energies inpp¯collisions ats=1.8TeV

2003

We present data on multiple production of jets with transverse energies near 20 GeV in p (p) over bar collisions at roots=1.8 TeV. QCD calculations in the parton-shower approximation of PYTHIA and HERWIG and the next-to-leading order approximation of JETRAD are compared to the data for one, two, three, and four jet inclusive production. Transverse energy spectra and multiple jet angular and summed transverse-energy distributions are adequately described by the shower approximation while next-to-leading order calculations describe the data poorly.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsJet (fluid)Particle physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::Phenomenology01 natural sciences7. Clean energySpectral lineNuclear physicsTransverse plane0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)Nuclear Experiment010306 general physicsBar (unit)Physical Review D
researchProduct

Search for flavor-changing-neutral-current D meson decays

2008

We study the flavor-changing-neutral-current process c to u mu+ mu- using 1.3 fb^-1 of p p bar collisions at sqrt(s) = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the Ds+ and D+ to phi pi+ to mu+ mu- pi+ final states with significance greater than four standard deviations above background for the D+ state. We search for the continuum decay of D+ to pi+mu+mu- in the dimuon invariant mass spectrum away from the phi resonance. We see no evidence of signal above background and set a limit of B(D+ to pi+mu+mu-) < 3.9 x 10^-6 at the 90% C.L. This limit places the most stringent constraint on new phenomena in the c to u mu+ mu- t…

PhysicsParticle physicsMeson010308 nuclear & particles physicsFlavor-changing neutral currentHadronTevatronGeneral Physics and AstronomyFOS: Physical sciencesElementary particle01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsParticle decayHigh Energy Physics - Experiment (hep-ex)Pair production0103 physical sciencesD meson[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Model-independent measurement of the W-boson helicity in top-quark decays at D0.

2008

Made available in DSpace on 2022-04-28T20:37:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-14 Science and Technology Facilities Council We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1fb-1 sample of candidate tt̄ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron pp̄ Collider. We reconstruct the angle θ* between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting cos θ* distribution finds that the fraction of longitudinal W bosons f0=0.425±0.166(stat)±0.102(syst) and the f…

PhysicsTop quarkParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyFermionRest frame01 natural sciencesHelicityNuclear physicsParticle decay0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsBosonLepton
researchProduct

Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

2016

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…

Physics - Instrumentation and DetectorsAutomatic dependent surveillance-broadcastComputer scienceCiencias FísicasAstronomyDetector alignment and calibration methods (lasers sources particle-beams)Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors01 natural sciencesTiming detectorsSynchronizationHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Sine wave[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsTransmitterDetectorSettore FIS/01 - Fisica Sperimentaleparticle-beams)Instrumentation and Detectors (physics.ins-det)Pattern recognition cluster finding calibration and fitting methodGlobal Positioning SystemComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCIENCIAS NATURALES Y EXACTASsourcesReal-time computingFOS: Physical sciencesCalibration and fitting methodClustersPattern recognition0103 physical sciencesCalibrationHigh Energy Physics010306 general physicsCiencias ExactasCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryCluster findingFísicaAstroparticles//purl.org/becyt/ford/1.3 [https]PhaserAstronomíaDetector alignment and calibration methods (lasersTiming detectorPierre AugerExperimental High Energy PhysicsRECONHECIMENTO DE PADRÕESCalibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors; Instrumentation; Mathematical PhysicsbusinessJournal of Instrumentation
researchProduct