0000000001170184

AUTHOR

P. Billoir

showing 67 related works from this author

A search for point sources of EeV neutrons

2012

A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

AstronomyEnergy fluxAstrophysics01 natural sciences7. Clean energyNeutron fluxObservatorycosmic rays – Galaxy: disk – methods: data analysisNeutron detection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma rayAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPierre Auger ObservatoryCOSMIC-RAYSRadiación cósmicaUltra High Energy Cosmic RayComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMASSIVE BLACK-HOLEFísica nuclearPierre Auger Observatory high-energy neutron sources neutron flux limitAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGalaxiaGalaxy: diskcosmic rays0103 physical scienceshigh-energy neutron sourcesNeutronCosmic-ray observatoryCiencias ExactasANISOTROPY010308 nuclear & particles physicsGAMMA-RAYSAnálisis de datosAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAneutron flux limitmethods: data analysisNÊUTRONSSpace and Planetary ScienceUltra High Energy Cosmic RaysExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]GALACTIC-CENTER
researchProduct

A search for neutral higgs particles in Z$^0$ decays

1992

Abstract The search in DELPHI data for neutral Higgs bosons is described. No candidate for the Standard Model Higgs is seen in Z0 decays to H 0 ν ν , H 0 μ + μ − or H0τ+τ− after selections that proved efficient for finding simulated H0. One remaining candidate for Z0 → H0e+e− is consistent with background. Together with our earlier studies, these results restrict the H0 mass to be above 38 GeV/c2 at the 95% confidence level. No signal is found for decays of Minimal Supersymmetric Standard Model neutral Higgs bosons to τ+τ−. Limits are obtained for their decays to produce four jets.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationSTANDARD MODEL01 natural sciencesLower limitStandard ModelNuclear physicsPHYSICSLIMITS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsMASS SCALAR BOSONLIGHT SCALAR010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ0 DECAYE+E COLLISIONSSupersymmetrySUPERSYMMETRIC MODELSLEPNUCLEAR DECAYHiggs bosonHigh Energy Physics::ExperimentFísica nuclearMASS SCALAR BOSON; Z0 DECAY; SUPERSYMMETRIC MODELS; STANDARD MODEL; E+E COLLISIONS; NUCLEAR DECAY; LIGHT SCALAR; LIMITS; LEP; PHYSICSParticle Physics - ExperimentMinimal Supersymmetric Standard Model
researchProduct

Ultra-High Energy Neutrinos at the Pierre Auger Observatory

2013

The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and …

ultra high energy neutrino[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsCiencias FísicasAstronomyFluxAstrophysics7. Clean energy01 natural sciencesAltas energíasAuger//purl.org/becyt/ford/1 [https]surface [detector]ObservatoryneutriniCosmic-rayscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCascada atmosférica extensaOBSERVATÓRIOS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsneutrino; Augerlcsh:QC1-999AugercascadeUHE [neutrino]observatoryPhysics::Space PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearultra high energy neutrinosNeutrinoAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASsignatureTAU-NEUTRINOSatmosphere [showers]FLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Article SubjectairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayFísica de Partículas y CamposLIMITPartícules (Física nuclear)Ultra high energy cosmic rayAtmosphere[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Air-showersSEARCHNeutrino0103 physical sciencesddc:530010306 general physicsAstrophysiqueCiencias ExactasPierre Auger ObservatoryAstroparticle physicsSPECTRUM010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaUltra high energy cosmic raystelescopes//purl.org/becyt/ford/1.3 [https]Ultrahigh Energyflux13. Climate actionenergy [neutrino]Pierre AugerExperimental High Energy PhysicsARRAYHigh Energy Physics::ExperimentAstroparticle physicslcsh:Physics
researchProduct

Performance of the DELPHI detector

1996

DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsENERGIESHadronDENSITY PROJECTION CHAMBER; IMAGING CHERENKOV DETECTOR; RADIATIVE-CORRECTIONS; LEP; SIMULATION; ENERGIES; Z(0); SCATTERING; PROGRAM; SYSTEM01 natural sciencesPartícules (Física nuclear)Particle identificationlaw.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PROGRAMRADIATIVE-CORRECTIONSSCATTERINGDetectors and Experimental Techniques010306 general physicsColliderInstrumentationDELPHINuclear and High Energy PhysicPhysicsLarge Hadron Colliderhigh granularityCalorimeter (particle physics)LEP; DELPHI; high granularity; particle identification010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyLEPZ(0)LARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORFIS/01 - FISICA SPERIMENTALEPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderSIMULATIONPARTICLE PHYSICSPhysics::Accelerator PhysicsFísica nuclearHigh Energy Physics::ExperimentDENSITY PROJECTION CHAMBERparticle identificationSYSTEMLepton
researchProduct

Evidence for B$^{0}_{s}$ meson production in Z$^0$ decays

1992

Seven unambiguous events out of a sample of 270 000 Z0 decays, contain in tile same jet a D(s) meson and a muon at large transverse momentum relative to the et axis. These events are direct evidence for B(s)0 meson production in hadronic Z0 decays. The production rate of these events, relative to all hadronic Z0 decays is ( 18 +/- 8) x 10(-5) this number including the relevant branching fractions of the B(s)0 and D(s). The value of the B(s)0 meson lifetime relative to the average B meson lifetime is measured to be 0.8 +/- 0.4.

Nuclear and High Energy PhysicsParticle physicsMeson productionMesonLUND MONTE-CARLOElectron–positron annihilationNuclear TheoryHadron01 natural sciencesCOLLIDERNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B mesonNuclear Experiment010306 general physicsPhysicsMuonLUND MONTE-CARLO; Z0 DECAYS; COLLIDER010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ0 DECAYSTransverse momentumFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentProduction rate
researchProduct

Observation of orbitally excited B mesons

1995

Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the Bπ and B*π distribution of Q = m(B**) - m(B(*)) - m(π) using Z0decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B**→ B(*)π is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c2, and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c2. This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c2and full width Γ = 145 ± 28 MeV/c2. The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-…

Nuclear and High Energy PhysicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationDELPHI; B meson; fragmentation; b-jetB meson01 natural sciencesResonance (particle physics)Full widthPartícules (Física nuclear)JET FRAGMENTATIONDECAYSNuclear physicsPHYSICSfragmentation0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B meson010306 general physicsNuclear ExperimentDetectors de radiacióDELPHIPhysics010308 nuclear & particles physicsQuark modelb-jetLARGE ELECTRON POSITRON COLLIDERExcited statePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; DECAYS; PHYSICSParticle Physics - ExperimentProduction ratePhysics Letters B
researchProduct

A Measurement of the Bbbar Forward-backward Asymmetry Using the Semileptonic Decay Into Muons

1992

PhysicsQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsMuonmedia_common.quotation_subjectHadronElectroweak interactionHigh Energy Physics::PhenomenologyWeinberg angleBottom quarkAsymmetryNuclear physicsPhysique des particules élémentairesComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nucleardigital documentAstrophysics::Earth and Planetary AstrophysicsNuclear Experimentmedia_common
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

1993

A study of inclusive production of the meson resonances ρ0, K*0 (892), f{hook}0 (975) and f{hook}2 (1270) in hadronic decays of the Z0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ0 0.64 ± 0.24 for the K*0 (892), 0.10 ± 0.04 for the f{hook}0 (975) in the momentum range p > 0.05pbeam (xp > 0.05) and 0.11 ± 0.05 for the f{hook}2 (1270) for xp > 0.1. These values and the corresponding differential cross sections ( 1 σhadr) dσ dxp for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The f{hook}2 (1270) production is overestimated by HERWIG but its xp-shape is correctly reproduced. T…

PhysicsNuclear and High Energy PhysicsParticle physicsMesonLUND MONTE-CARLO010308 nuclear & particles physicsElectron–positron annihilationHadronE+E-ANNIHILATION01 natural sciencesJET FRAGMENTATIONK+P INTERACTIONSPHYSICSNuclear physicsGEV/C0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RHO0Física nuclearMultiplicity (chemistry)010306 general physicsParticle Physics - ExperimentLUND MONTE-CARLO; E+E-ANNIHILATION; K+P INTERACTIONS; JET FRAGMENTATION; PHYSICS; GEV/C; RHO0Physics Letters B
researchProduct

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

2013

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Atmospheric MonitoringSatellitesInfraredAstronomyCloud coverFOS: Physical sciencesAtmospheric monitoring01 natural sciencesCiencias de la Tierra y relacionadas con el Medio AmbienteAuger//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/1.5 [https]ObservatoryClouds0103 physical sciencesExtensive air showers010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionCiencias ExactasPhysicsPierre Auger ObservatoryUHE Cosmic Rays atmosphere010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomyPierre Auger ObservatoryAstronomy and AstrophysicsUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]INFRAVERMELHOExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPierre Auger observatoryultra-high energy cosmic rays; Pierre Auger Observatory; extensive air showers; atmospheric monitoring; clouds; satellitesFísica nuclearSatelliteCentral Laser FacilityExtensive Air ShowersAstrophysics - Instrumentation and Methods for AstrophysicsMeteorología y Ciencias AtmosféricasSYSTEMCIENCIAS NATURALES Y EXACTASAstroparticle Physics
researchProduct

A measurement of the tau lifetime

1993

The tau lepton lifetime is measured using four different methods with the DELPHI detector. Three measurements using one prong decays are combined, accounting for correlations, resulting in tau(tau) = 298 +/- 7 (stat.) +/- 4 (syst.) fs while the decay length distribution of three prong decays gives tau(tau) = 298 +/- 13 (stat.) +/- 5 (syst.) fs. The combined result is tau(tau) = 298 +/- 7 fs. The ratio of the Fermi coupling constant from tau decay relative to that from muon decay is found to be 0.985 +/- 0.013, compatible with lepton universality.

PhysicsCoupling constantParticle physicsArgusNuclear and High Energy PhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsElectron–positron annihilation01 natural sciences7. Clean energyNuclear physics0103 physical sciencesDecay lengthLEPTONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclearCombined result010306 general physicscomputerParticle Physics - ExperimentFermi Gamma-ray Space TelescopeLeptoncomputer.programming_language
researchProduct

Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

2011

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc- tion and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos- mic rays. We describe the largest multiplets found an…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Field (physics)Astronomyultra-high energy cosmic rays; Pierre Auger Observatory; arrival directionsFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesCosmic RayAugerPosition (vector)0103 physical sciencesFIELDPierre auger observatory010303 astronomy & astrophysicsUltra-high energy cosmic rayDETECTORCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsArrival directions010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsIsotropyFísicaAstronomy and AstrophysicsASTROFÍSICAUltra-high energy cosmic raysMagnetic fieldExperimental High Energy PhysicsData analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSArrival directionUltra-High Energy Cosmic Ray
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

A Targeted Search for Point Sources of EeV Neutrons

2014

A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …

Astrofísica[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesGalaxy: diskcosmic raysNeutron fluxObservatory0103 physical sciencesdata analysis [methods]Neutron010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Galactic CenterPierre Auger Observatory; cosmic ray; neutronsAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsGalactic planemethods: data analysisMagnetic fluxGalaxyAstronomíaSpace and Planetary ScienceExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGddc:520Física nuclearAstrophysics - High Energy Astrophysical Phenomenadisk [Galaxy]
researchProduct

Search for weakly decaying b -flavored pentaquarks

2018

Investigations of the existence of pentaquark states containing a single $b$ (anti)quark decaying weakly into four specific final states J/$\psi K^+\pi^- p$, J/$\psi K^- \pi^- p$, J/$\psi K^- \pi^+ p$, and $J/\psi \phi (1020) p$ are reported. The data sample corresponds to an integrated luminosity of 3.0/fb in 7 and 8 TeV pp collisions acquired with the LHCb detector. Signals are not observed and upper limits are set on the product of the production cross section times branching fraction with respect to that of the $\Lambda_b$.

baryon: exoticPhysics and Astronomy (miscellaneous)7000 GeV-cms8000 GeV-cms01 natural sciencesPhysics Particles & FieldsSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentLuminosityHigh Energy Physics - Experiment (hep-ex)Hadron-Hadron scattering (experiments)scattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]exotic [baryon]LHCb - Abteilung HintonpentaquarkPhysics8000 GeV-cmsPhysicsParticle physicsPentaquark3. Good healthchannel cross section: branching ratio: upper limitExotic baryonpentaquark --> J/psi(3100) K- pi+ pBranching fraction Hadron-Hadron scattering (experiments) QCDpentaquark --> J/psi(3100) K- pi- pCERN LHC Coll7000 GeV-cmsPhysical Sciencespentaquark --> J/psi(3100) Phi(1020) pBranching fractionLHCcolliding beams [p p]Particle Physics - ExperimentQuarkParticle physicsp p: scatteringFOS: Physical sciencesAstronomy & AstrophysicsHadronsNOmultiquark[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)Science & Technologybranching ratio: upper limit [channel cross section]hep-ex010308 nuclear & particles physicsBranching fractionpentaquark --> J/psi(3100) K+ pi- pParticles and FieldGran Col·lisionador d'HadronsBottom quarkQCDLHC-BHEPLHCbHigh Energy Physics::ExperimentFísica de partículesExperimentsp p: colliding beamsexperimental resultsPhysical Review D
researchProduct

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

2012

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

Ciencias Astronómicas[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical Phenomenashowers: atmosphere | cosmic radiation: UHE | polarization: effect | Auger | radio wave: emission | radio wave: detector | galaxy | background | reflection | noise | detector: networkFOS: Physical sciencesCosmic ray01 natural sciencesSignalKASCADEMHZOpticsSIGNALS0103 physical sciencesTransient responseTime domain010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physics[PHYS]Physics [physics]PhysicsPierre Auger ObservatorySPECTRUMLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsbusiness.industryPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]ATMOSFERA (MONITORAMENTO)Air showerAntennaExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONAntennasFísica nuclearAntenna (radio)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Searches for heavy neutrinos from Z decays

1992

We have searched for possible fourth family heavy neutrinos, pair produced in Z0 decays, in a sample of about 112 000 hadronic Z0 final states collected with the DELPHI detector. For all mixing matrix elements we exclude a new Dirac neutrino lighter than 44.5 GeV at a 95% confidence level, if the neutrino couples to the electron or muon family, and lighter than 44.0 GeV, if the neutrino couples to the tau family. Depending on the values of the mixing element and to which lepton family the neutrino couples, we obtain mass limits up to 46.2 GeV. For all mixing matrix elements we exclude a new Majorana neutrino lighter than 39.0 GeV, if it couples to the electron or the muon family, and lighte…

Z-PEAK; LEPTONS; RESONANCE; LIMITS; QUARKSNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaElectron–positron annihilationHadron01 natural sciencesNuclear physicsLIMITS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QUARKSNuclear Experiment010306 general physicsMixing (physics)PhysicsMuon010308 nuclear & particles physicsDirac (video compression format)High Energy Physics::PhenomenologyRESONANCEZ-PEAKMAJORANALEPTONSPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentLepton
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory

2010

The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierr…

Angstrom exponentAstronomyAstrophysics01 natural sciencesAugerCROSS-SECTIONSCOSMIC-RAY SHOWERSObservatoryDEPENDENCEHigh-Energy Cosmic Ray010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Lidar[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ANGSTROM EXPONENTPierre Auger ObservatoryBi-static lidarELECTRONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMULTIPLE-SCATTERINGLight emissionFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLIGHT-EMISSIONAstrophysics - Cosmology and Nongalactic Astrophysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Extensive air showerFOS: Physical sciencesCosmic raySURFACE DETECTORAir fluorescence method0103 physical sciencesExtensive air showersRECONSTRUCTIONAerosolInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryAerosolsCalorimeter (particle physics)Atmospheric effect010308 nuclear & particles physicsAtmosphereFísicaAstronomy and AstrophysicsCosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidarCosmic rayNITROGENAir showerFluorescence Telescopes13. Climate actionExperimental High Energy PhysicsAEROSSOL
researchProduct

Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

2011

We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 × 1017 eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.

Large scale anisotripies[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Auger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)FOS: Physical sciencesCosmic rayAstrophysicsanisotropySURFACE DETECTOR01 natural sciencesCosmic RayAugerLarge scale anisotropiesObservatoryLarge scale anisotropie0103 physical sciences010303 astronomy & astrophysicsUltra-high energy cosmic rayCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASUltra High Energy Cosmic Rays.010308 nuclear & particles physicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high energy cosmic raysENERGY-SPECTRUMRadiación cósmicaAnisotropíaAmplitudeHarmonicsUltra-high energy cosmic rays; Large scale anisotropies; Pierre Auger ObservatoryExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

Search for pair production of neutral Higgs bosons in Z$^0$ decays

1990

The pair production of the lightest scalar Higgs boson, h, and a pseudoscalar Higgs boson, A, was searched for in a data sample containing 10 000 hadronic Z0 decays. The search involved both leptonic and purely hadronic decay channels of each Higgs boson. No signal was found, and limits on the Higgs boson masses, in the framework of the minimal supersymmetric extension of the standard model, ar reported up to 35 GeV/c2 at 95% CL, for both tan β > 1 and tan β < 1, where tan β is the ratio of the vacuum expectation values of the two Higgs doublets.

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Electron–positron annihilationHigh Energy Physics::Lattice01 natural sciencesNuclear physicssymbols.namesake0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsCondensed Matter::Quantum Gases010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySupersymmetryScalar bosonPseudoscalarPair productionPhysique des particules élémentairessymbolsHiggs bosonHigh Energy Physics::ExperimentFísica nuclearHiggs mechanismParticle Physics - Experiment
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

2012

The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confiden…

FLUORESCENCE DETECTORAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesCosmic RayAugerPierre Auger Observatory ; Monte Carlo simulations ; ultra-high energy cosmic raysHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Observatory0103 physical sciencesRECONSTRUCTIONFermilab010306 general physicsUHE Cosmic Rays Monte Carlo Energy SpectrumTRIGGERNuclear PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryPACS: 96.50.S 96.50.sb 96.50.sd 98.70.Sa010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger Observatory; Monte Carlo simulations; ultra-high energy cosmic raysPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryPROFILES[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Experimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

The exposure of the hybrid detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ‘‘hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data coll…

Physics::Instrumentation and DetectorsAstronomy01 natural sciencesCoincidenceAugerFluorescence detectorData acquisitionAuger experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFÍSICA DE PARTÍCULASSettore INF/01 - InformaticaCascada atmosférica extensaPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger Observatoryultra high energy cosmic rays; Pierre Auger Observatory; extensive air showers; trigger; exposure; fluorescence detector; hybridENERGY-SPECTRUMRadiación cósmicaSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaExtensive air showerMeasure (physics)FOS: Physical sciencesCosmic rayCosmic RayFluorescence spectroscopyUltra high energy cosmic rayExposureNuclear physicsOpticsSHOWERS0103 physical sciencesExtensive air showers010306 general physicsCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaAstronomy and AstrophysicsUltra high energy cosmic raysHybrid[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]fluxTriggerExperimental High Energy PhysicsbusinessSYSTEMAstroparticle Physics
researchProduct

Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

2016

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…

Ciencias FísicasAstronomyGeneral Physics and Astronomyultra-high energy cosmic raysAstrophysics01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)CODALEMAObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)Radio detectorTUNKA-REXSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsRadio TechniqueFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysicsradio emissionCIENCIAS NATURALES Y EXACTASRadio wave[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy (all)0103 physical sciencesextensive air showersHigh Energy Physicsultra-high energy cosmic rays extensive air showers radio emission010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger Observatory010308 nuclear & particles physicsRadiant energyFísicaLOFAR//purl.org/becyt/ford/1.3 [https]LOFARASTROFÍSICASIMULATIONSComputational physicsAstronomíaCOREASExperimental High Energy PhysicsARRAYEMISSION SIMULATIONS LOFAR.EMISSION
researchProduct

Correlation of the highest-energy cosmic rays with nearby extragalactic objects.

2007

Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…

Active galactic nucleus[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]Cosmic background radiationFOS: Physical sciencesFluxOsservatorio Pierre AugerCosmic rayanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmici0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsBackground radiationNuclei galattivi attiviPhysicsPierre Auger ObservatorySPECTRUMMultidisciplinary[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMedicine (all); MultidisciplinaryMedicine (all)Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)angular dependence [cosmic radiation]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaExperimental High Energy Physicsddc:500Energy (signal processing)experimental results
researchProduct

Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

2010

We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FLUORESCENCE LIGHTGeneral Physics and AstronomyPierre Auger Observatory; depth of maximum; fluorescence detector; cosmic raysFOS: Physical sciencesCosmic rayChemical CompositionAstrophysicsMass compositionENERGIA01 natural sciencesCoincidenceAugerNuclear physicsPhysics and Astronomy (all)cosmic rays0103 physical sciencesRECONSTRUCTIONHigh-Energy Cosmic Ray010303 astronomy & astrophysicsDETECTORCiencias ExactasPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MeasurementSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ExperimentDetectorPrimary compositionFísicaPierre Auger ObservatoryCOSMIC-RAYSCosmic raylongitudinal developmentLongitudinal developmentRESOLUTIONFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenaenergyPhysical Review Letters
researchProduct

Multiplicity dependence of mean transverse momentum in $e^+e^-$ annihilations at LEP energies

1992

A strong increase of the mean transverse momentum [p(t)] with the number of charged particles n(ch) is observed in e+e- annihilations into hadrons at LEP energies, The effect resembles correlations observed in hadron-hadron interactions. In e+e- annihilations the [p(t)] and n(ch) correlations can be accounted for by gluon radiation.

Nuclear and High Energy PhysicsParticle physicsCOLLISIONSElectron–positron annihilationHadronNuclear TheoryISR ENERGIESANTI-PROTON COLLIDER; ISR ENERGIES; COLLISIONS; SPECTRA; EVENTS; MATTER; QCDRadiation01 natural sciencesANTI-PROTON COLLIDERNuclear physicsEVENTS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SPECTRAMultiplicity (chemistry)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyQCDCharged particleGluonTransverse momentumFísica nuclearHigh Energy Physics::ExperimentMATTERParticle Physics - Experiment
researchProduct

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

2014

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…

AstrofísicaPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyCiencias Físicasmuonshadronic interaction modelsAstrophysics01 natural sciencesHigh Energy Physics - ExperimentAuger//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Air showersProduction depthSURFACE DETECTOR ARRAY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh-Energy Cosmic Rays[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Pierre Auger ObservatoryObservableInstrumentation and Detectors (physics.ins-det)COSMIC-RAYSlongitudinal developmentCore (optical fiber)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayNuclear physicscosmic rays[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesextensive air showers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Física//purl.org/becyt/ford/1.3 [https]ASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomíaMODELExperimental High Energy PhysicsHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]muonic componentSYSTEM
researchProduct

Determination of 55-155-155-1in second order QCD from hadronic Z decays

1992

Distributions of event shape variables obtained from 120600 hadronic Z decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model. © 1992 Springer-Verlag.

Quantum chromodynamicsPhysicsParticle physicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsElectron–positron annihilationHadronHigh Energy Physics::Phenomenology01 natural sciencesHadronizationRenormalization0103 physical sciencesHigh Energy Physics::ExperimentPerturbation theory (quantum mechanics)010306 general physicsParton showerEngineering (miscellaneous)Event (particle physics)Zeitschrift für Physik C Particles and Fields
researchProduct

Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

2011

Erratum: Phys. Rev. D 85, 029902(E) (2012) [http://dx.doi.org/10.1103/PhysRevD.85.029902]

Physics::Instrumentation and DetectorsSolar neutrinoAstrophysicsUPPER LIMITPHOTON FRACTION01 natural sciences7. Clean energyneutrinoObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pionAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryCOSMIC-RAYScosmic ray detectorsand other elementary particle detectorsCosmic neutrino backgroundNEUTRINOSFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFLUXFERMI-LATNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TELESCOPEAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTORCosmic RayPionmuon0103 physical sciencesNeutrino010306 general physicsCosmic raysPierre Auger ObservatoryMuon010308 nuclear & particles physicsFísicaand other elementary particlesUltra-high energy cosmic raysPERFORMANCECosmic rayneutrino flavor; air showers; surface detector; observatory; atmosphere; Auger; cosmic radiation; energy spectrum13. Climate actionHigh Energy Physics::Experiment
researchProduct

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

2011

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than $60^\circ$, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution t…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentCosmic rayAstrophysicsultra high energy cosmic raysEXTENSIVE AIR-SHOWERS01 natural sciencesDeclinationultra high energy cosmic ray0103 physical sciencescosmic rays detectors; cosmic ray experiments; ultra high energy cosmic rayscosmic rays detectorAnisotropyInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsZenithParticle detectors.Pierre Auger ObservatoryPhysics010308 nuclear & particles physicsPhysicsOBSERVATÓRIOSAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AzimuthMODELEarth's magnetic fieldPhysics::Space PhysicsLarge detector systems for particle and astroparticle physicARRAYFísica nuclearcosmic rays detectorscosmic ray experimentsAstrophysics - Instrumentation and Methods for AstrophysicsEnergy (signal processing)Cherenkov detectorJournal of Cosmology and Astroparticle Physics
researchProduct

First study of the CP-violating phase and decay-width difference in Bs0→ψ(2S)ϕ decays

2016

A time-dependent angular analysis of Bs0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs0 system are measured to be ϕs=0.23−0.28+0.29±0.02rad and ΔΓs=0.066−0.044+0.041±0.007ps−1, respectively, where the first uncertainty is statistical and the second systematic. This is the first time that ϕs and ΔΓs have been measured in a decay containing the ψ(2S) resonance.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)010308 nuclear & particles physicsPhase (waves)Astrophysics01 natural sciencesResonance (particle physics)Angular distribution0103 physical sciencesCP violation010306 general physicsPhysics Letters B
researchProduct

Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

2012

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

AstronomyAtmospheric modelAtmospheric monitoringAtmospheric sciencesCosmic Rays Shower01 natural scienceslaw.inventionData assimilationlawcosmic rays; extensive air showers; atmospheric monitoring; atmospheric modelsDEPENDENCEATMOSFERA (OBSERVAÇÃO)TEMPERATUREPhysics::Atmospheric and Oceanic PhysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]Cascada atmosférica extensaOPTICAL DEPTH[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryAtmospheric temperatureRadiación cósmicaAtmosphere of EarthComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRadiosondeFísica nuclearREFRACTIVE-INDEXAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]MeteorologyAtmospheric MonitoringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic Rays ShowersEXTENSIVE AIR-SHOWERSCosmic RayAtmósferaWeather stationAtmospheric models0103 physical sciencesExtensive air showers010306 general physicsCosmic raysDETECTORCiencias ExactasPierre Auger ObservatoryAtmospheric models010308 nuclear & particles physicsFísicaAstronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsEMISSION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A measurement of the photon structure function F-2(gamma) at an average Q(2) of 12 GeV2/c(4)

1995

The hadronic photon structure function F_{2}^{gamma} has been measured in the Q^{2} range from 4 to 30~GeV^2/c^{4} and down to x values of order 0.001, using data taken with the DELPHI detector at LEP between 1991 and 1993. A comparison is made with several F_{2}^{gamma} parameterizations with special emphasis on their low x behaviour. A result on the Q^{2} evolution of F_{2}^{gamma} is presented.

Particle physicsPhotonPhysics and Astronomy (miscellaneous)LEP; DELPHI; hadronic photon structureHadronMONTE-CARLO SIMULATIONStructure (category theory)01 natural sciencesC-4Partícules (Física nuclear)JET FRAGMENTATIONlaw.inventionQ2Nuclear physicsMONTE-CARLO SIMULATION; STRUCTURE-FUNCTION F2; JET FRAGMENTATION; E+E-PHYSICS; QCD; Q2; SCATTERING; ORDERlaw0103 physical sciencesRange (statistics)SCATTERINGhadronic photon structure010306 general physicsDELPHIQuantum chromodynamicsPhysicsE+E-PHYSICS010308 nuclear & particles physicsScatteringEmphasis (telecommunications)DetectorOrder (ring theory)ORDERLEPQCDLARGE ELECTRON POSITRON COLLIDERPhoton structure functionPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMass spectrumPARTICLE PHYSICSFísica nuclearSTRUCTURE-FUNCTION F2
researchProduct

Search for scalar leptoquarks from Z$^0$ decays

1992

We have searched for pair produced scalar leptoquarks each decaying to a quark and a charged lepton in a sample of 116 000 hadronic Z0 events produced at LEP. No candidate was detected and cross section and branching ratio limits are set for the above process at 95% CL. Mass limits are found to be about 42 GeV/c2 depending only slightly on the models used and a coupling times branching ratio exclusion line is drawn for a scalar leptoquark with a free coupling. We have also probed the mass region above 45 GeV/c2 for a singly produced scalar leptoquark and set limits on the cross section and the coupling lambda(2)/4-pi up to 60 GeV.

QuarkLibraryNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationHadronDigitisationArchive01 natural sciencesJET FRAGMENTATIONPHYSICSNuclear physicsLUND MONTE-CARLO; JET FRAGMENTATION; HADRONIC DECAYS; E+E; PHYSICS; BOSON0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Leptoquark010306 general physicsPhysicsFoucault010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyScalar (physics)BOSONE+EFísica nuclearHigh Energy Physics::ExperimentHADRONIC DECAYSParticle Physics - ExperimentLepton
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct

Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

2013

We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesultra-high energy cosmic raysCosmic rayAstrophysicsultra high energy cosmic raysAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAugerNUMBERObservatoryCosmic ray experiments0103 physical sciencesultra-high energy cosmic rayUltra-high-energy cosmic ray010303 astronomy & astrophysicsDETECTORLuminosity functionPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FÍSICA DE PARTÍCULASRange (particle radiation)SPECTRUMCosmologia010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsUltra high energy cosmic raysAstronomíaLUMINOSITY FUNCTIONMagnitude (astronomy)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiaFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysCIENCIAS NATURALES Y EXACTAS
researchProduct

Energy-energy correlations in hadronic final states from Z0 decays

1990

We have studied the energy-energy angular correlations in hadronic final states from Z0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ(5)/MS = 104-20 +25 (stat.)-20 +25(syst.)-00 +30(theor.) MeV, which corresponds to αs(91 GeV) = 0.106± 0.003 (stat.)±0.003(syst.)-0.000 +0.003(theor.). The theoretical error stems from different choices for the renormalization scale of αs. In the Monte Carlo simulation the scale of αs as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO2ND ORDER QCDElectron–positron annihilationHadronMonte Carlo methodElementary particleSTRONG-COUPLING-CONSTANT; ELECTRON-POSITRON ANNIHILATION; LUND MONTE-CARLO; FREE PERTURBATION-THEORY; 2ND ORDER QCD; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ALPHA-S; FRAGMENTATION MODELS; JET FRAGMENTATIONFRAGMENTATION MODELS01 natural sciencesJET FRAGMENTATIONNuclear physicsParticle decay0103 physical sciencesSTRONG-COUPLING-CONSTANTALPHA-S010306 general physicsNuclear ExperimentELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsCoupling constantPhysicsQUANTUM CHROMODYNAMICSAnnihilation010308 nuclear & particles physicsE+E-ANNIHILATIONFREE PERTURBATION-THEORYPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Search for Z0 decays to two leptons and a charged particle-antiparticle pair

1993

Based on a sample equivalent to 365 000 hadronic Z0 decays, the search in DELPHI data for pairs of leptons accompanied by a pair of charged particles is described. A total of 11 events were found in the electron channel, 9 in the muon channel and 7 in the tau channel. Results on lepton pairs with a radiated photon are also presented. The data from all channels are compatible with the expectations from standard processes. However, one event was found in the tau channel with an unusually high mass of the charged particle pair.

PhysicsNuclear and High Energy PhysicsAntiparticleParticle physicsPhotonMuonElementary particleCharged particleNuclear physicsParticle decay[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclearEvent (particle physics)Particle Physics - ExperimentLeptonComputer Science::Information Theory
researchProduct

Updated precision measurement of the average lifetime of B hadrons

1996

The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.}

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationHadron01 natural sciencesb taggingPartícules (Física nuclear)030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesinclusive reconstruction0302 clinical medicine0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsLARGE ELECTRON POSITRON COLLIDERCharged particleB hadrons lifetimeDELPHI; B hadrons lifetime; inclusive reconstruction; b taggingPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearAstrophysics::Earth and Planetary AstrophysicsImpact parameterParticle Physics - Experiment
researchProduct

Production of strange particles in the hadronic decays of the Z0

1992

Abstract An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsLUND MONTE-CARLOElectron–positron annihilationHadronMonte Carlo methodDetector01 natural sciencesJET FRAGMENTATIONNuclear physicsPHYSICSQUARK SUPPRESSION0103 physical sciencesMass spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Física nuclearHigh Energy Physics::Experiment010306 general physicsLUND MONTE-CARLO; JET FRAGMENTATION; QUARK SUPPRESSION; PHYSICSParticle Physics - ExperimentBoson
researchProduct

Improved measurements of cross sections and asymmetries at the Z0 resonance

1994

During the 1992 running period of the LEP e+e- collider, the DELPHI experiment accumulated approximately 24 pb-1 of data at the Z0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m(t) = 157(-48)+36(expt.)-20(+19)(Higgs) GeV, and for the effective mixing angle sin2 …

Nuclear and High Energy PhysicsParticle physicsTop quarkLUND MONTE-CARLOElectron–positron annihilationLEP-SLC ENERGIESElementary particle7. Clean energy01 natural sciencesJET FRAGMENTATIONStandard ModelPHYSICSNuclear physicsBHABHA SCATTERINGParticle decay0103 physical sciencesPROGRAM[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSZ0010306 general physicsDELPHIPhysicsLOWEST-ORDER CALCULATIONScross section010308 nuclear & particles physicsDELPHI; Bhabha scattering; cross section; Z0High Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERLUND MONTE-CARLO; ELECTRON-POSITRON COLLISIONS; LOWEST-ORDER CALCULATIONS; LEP-SLC ENERGIES; BHABHA SCATTERING; RADIATIVE-CORRECTIONS; JET FRAGMENTATION; PROGRAM; PHYSICSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderHiggs bosonPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentELECTRON-POSITRON COLLISIONSParticle Physics - ExperimentLepton
researchProduct

Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

2017

We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…

moment: dipoleAstronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray experiments; ultra high energy cosmic rays; Astronomy and AstrophysicsCosmic rayanisotropyultra high energy cosmic raysSURFACE DETECTOR01 natural sciencesLARGE-SCALE DISTRIBUTIONwaveletSEARCH0103 physical sciencesARRIVAL DIRECTIONSHigh Energy Physicscosmic radiation: UHEAnisotropy010303 astronomy & astrophysicsZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectral densityAstronomy and AstrophysicsEEVASTROFÍSICAComputational physicsAugerCosmic ray experiments; ultra high energy cosmic raysobservatoryDipolecosmic ray experiments ultra high energy cosmic raysRESOLUTIONMoment (physics)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGpower spectrum: angular dependenceARRAYcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Search for exclusive decays of the Lambda_b baryon and measurement of its mass

1996

A search for fully reconstructed \lb beauty baryons is performed using about 3 million Z decays collected with the DELPHI detector at LEP. The analysis relies on the combined use of the accurate tracking and of the hadron identification capabilities of DELPHI. A total of four events has been found, three in the \lc\ppm channel and one in the \lc\a1m channel over a small background. The \lb beauty baryon mass is measured to be (~ 5668 \pm 16~ ({\rm stat.}) \pm 8~({\rm syst.})~)~ \mv.

Nuclear and High Energy PhysicsParticle physicsHadronCombined useLambdaTracking (particle physics)01 natural sciencesPartícules (Física nuclear)Nuclear physicsbeauty baryon0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentDetectors de radiacióDELPHIPhysics010308 nuclear & particles physicsDetectorLARGE ELECTRON POSITRON COLLIDERBaryonDELPHI; beauty baryon; particle identificationPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::Experimentparticle identificationParticle Physics - Experiment
researchProduct

Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

2013

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesultra high energy cosmic rayInterpretation (model theory)//purl.org/becyt/ford/1 [https]Nuclear physics0103 physical sciencesPARTICLES010306 general physicsDispersion (water waves)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryCOMPOSICIÓN DE MASAEXPERIMENTO AUGER010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsObservableASTROFÍSICA//purl.org/becyt/ford/1.3 [https]RAYOS COSMICOSAstronomíaENERGY COSMIC-RAYSMODELDistribution (mathematics)Air showerParticlesUltra High Energy Cosmic RaysExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGEnergy cosmic-raysFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASSimulationcosmic ray experiments; ultra high energy cosmic raysModel
researchProduct

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

2016

Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

Hadronic interaction[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsCOLLISIONSAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesGeneral Physics and AstronomyCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Observatory0103 physical sciencesCalibrationHigh Energy PhysicsUHE Cosmic Rays010306 general physicsParticle PhysicsCosmic raysGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryEnergyMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaInteraction modelASTROFÍSICAHigh Energy Physics - Phenomenology13. Climate actionExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of CP asymmetry in Bs0 → Ds ∓K± decays

2014

Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059

B physicCKM angle gamma01 natural sciencesB physicsLuminosityFlavor physicsHadron-Hadron scattering (experiments)TOOLLHCb - Abteilung HintonQCmedia_commonPhysicsParticle physicsCharge conjugation parity time reversal and other discrete symmetrie12.15.HhB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron ScatteringJustice and Strong InstitutionsCP violationB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron Scattering; Nuclear and High Energy PhysicsFísica nuclearLHCAstrophysics::Earth and Planetary AstrophysicsParticle physicsNuclear and High Energy PhysicsVIOLATIONSDG 16 - PeaceVIOLATION; GAMMA; TOOLAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subject14.40.NdLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsHadrons530Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementAsymmetryNOHadronic decays of bottom mesonTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)Astrophysics::Galaxy AstrophysicsHadron-Hadron Scattering010308 nuclear & particles physicsSDG 16 - Peace Justice and Strong InstitutionsGran Col·lisionador d'HadronsGAMMA/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsHEPLHCbFlavor physic13.25.HwB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)lcsh:QC770-798Bottom mesons (|B|>0)11.30.ErHigh Energy Physics::ExperimentB physics CKM angle gamma CP violation Flavor physics Hadron-Hadron ScatteringFísica de partículesExperiments
researchProduct

Measurement of inclusive K*(0)(892), phi(1020) and K-2*(0)(1430) production in hadronic Z decays

1996

The inclusive production of the neutral vector mesons K-*0(892) and phi(1020), and of the tensor meson K-2(*0)(1430), in hadronic decays of the Z has been mea sured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 +/- 0.08 K-2(*0)(892), 0.104 +/- 0.008 phi(1020) and 0.079 +/- 0.040 K-2(*0)(1430). The ratio of the tensor-to-vector meson production yields, [K-2(*0)(1430)]/[K-*0(892)] = 0.10 +/- 0.05, is smaller than the [f(2)(1270)]/[rho(0)(770)] and [f'(2)(1525)]/[phi(1020)] ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and…

Particle physicsMeson productionPhysics and Astronomy (miscellaneous)MesonElectron–positron annihilationHadronVECTORproduction rate01 natural sciencesPartícules (Física nuclear)DELPHI; neutral vector meson; tensor meson; production rateNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]MESON; VECTOR; GEV/Cneutral vector mesonTensorNeutral vector010306 general physicsDetectors de radiacióDELPHIPhysics010308 nuclear & particles physicstensor mesonGEV/CMass spectrumProduction (computer science)MESON
researchProduct

Search for pair production of heavy objects in 4-jet events at sqrt {s}$=130-136 GeV

1996

Results are presented of a search for pair production of heavy objects decaying into four hadronic jets, as expected for example from associated or pair production of MSSM Higgs bosons, hA or H$^+$H$^-$, using a data sample of $5.9\,$pb$^{-1}$ of $e^+ e^-$ collisions at $\sqrt{s}=130$-$136\,{\mathrm {GeV}}$ collected with the DELPHI detector at LEP in November 1995. The data and expectations from standard processes agree after four-jet selections. An analysis based on $b$-tagging finds no hA candidate with high mass. A study optimized to search for H$^+$H$^-$ events with mass in the 40-50$\,{\mathrm{GeV}}/c^2$ range also finds no candidate. Finally a comparison is made with a recent ALEPH a…

Particle physicsAlephPhysics and Astronomy (miscellaneous)ENERGIESElectron–positron annihilationHadronHIGGS BOSONSJet (particle physics)Partícules (Física nuclear)DECAYSNuclear physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors de radiacióBosonDELPHIPhysicsHigh Energy Physics::PhenomenologySupersymmetryLARGE ELECTRON POSITRON COLLIDERHIGGS BOSONS; ENERGIES; DECAYSPair productionPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIHiggs bosonPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Lifetime of Charged and Neutral B-hadrons Using Event Topology

1995

The lifetimes of charged and neutral B hadrons have been measured using data collected by the DELPHI experiment at LEP between 1991 and 1993. B hadrons are tagged as jets with a secondary vertex and the charge of the B candidate is taken to be the sum of the charges of the particles in the secondary vertex. Approximately 1,434,000 multihadronic \PZz decays yielded 1817 B hadron candidates. The B purity was estimated to be around 99.1\pm0.3\%, and 83\% (70\%) of the events measured as neutral (charged) came from neutral (charged) B's. The mean lifetimes of charged and neutral B hadrons were found to be \TAUBC\pm\ERRBC\;(stat.)\pm\SYSBC\;(syst.)~ps and \TAUBN\pm\ERRBN\;(stat.)\pm\SYSBN\;(syst…

Particle physicsPhysics and Astronomy (miscellaneous)MesonLUND MONTE-CARLOElectron–positron annihilationHadronB hadron01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONDELPHI; B hadron; lifetime; jet taggingNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsEngineering (miscellaneous)DELPHIlifetimeLUND MONTE-CARLO; JET FRAGMENTATION; E+E-PHYSICSPhysicsE+E-PHYSICS010308 nuclear & particles physicsLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysicsjet taggingParticle Physics - Experiment
researchProduct

Search for neutral and charged Higgs bosons in $e^+ e^-$ collisions at $\sqrt{s}$= 161 GeV and 172 GeV

1998

A search for neutral and charged Higgs bosons has been performed in the data collected by the {\sc DELPHI} detector at centre-of-mass energies of 161~GeV and 172~GeV. The analysis assumes either the pair-production of charged Higgs bosons, ${\mathrm H}^{\pm}$, or the production of the lightest neutral Higgs boson, h, with either a Z or a neutral pseudoscalar Higgs boson, A. All final state topologies expected from the decay of h and A %neutral Higgs particles into hadrons or a pair of $\tau$ leptons, and from the decay of ${\mathrm H}^{\pm}$ %charged Higgs bosons into a pair of quarks or a $\tau \nu_{\tau}$ pair have been considered. %In the case of the associated production with a Z boson,…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)LOWEST ORDER CALCULATIONSElectron–positron annihilationHigh Energy Physics::LatticeHadronMONTE-CARLO SIMULATIONSTANDARD MODEL2-PHOTON PROCESSES01 natural sciencesPartícules (Física nuclear)Nuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSNuclear Experiment010306 general physicsEngineering (miscellaneous)SUPERSYMMETRYDELPHIBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySupersymmetryE+E-ANNIHILATIONLARGE ELECTRON POSITRON COLLIDERMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; E+E-ANNIHILATION; RADIATIVE-CORRECTIONS; 2-PHOTON PROCESSES; STANDARD MODEL; Z(0) DECAYS; PHYSICS; SUPERSYMMETRYZ(0) DECAYSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderHiggs bosonPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentLepton
researchProduct

A measurement of the mean lifetimes of charged and neutral B-hadrons

1993

The decays of B-hadrons have been reconstructed using the charged particles recorded in the DELPHI silicon microstrip detector. The sum of the charges of the secondaries determines the charge of the B-hadron parent. Some 232 114 multihadronic Z0 decays recorded during the 1991 run of LEP at centre-of-mass energies between 88.2 GeV and 94.2 GeV yield 253 B-hadron candidates with well-measured charge. From these the mean lifetimes of neutral and charged B-hadrons are found to be 1.44 +/- 0.21(stat.) +/- 0.14(syst.) ps and 1.56 +/- 0.19(stat.) +/- 0.13(syst.) ps respectively. The ratio of their lifetimes is 1.09(-0.23)+0.28 (Stat.) +/- 0.11 (syst.). Under some assumptions on the abundance and …

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationHadronElementary particle01 natural sciencesJET FRAGMENTATIONNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsNeutral particleAstrophysics::Galaxy AstrophysicsLUND MONTE-CARLO; JET FRAGMENTATION; E+E-PHYSICSPhysicsE+E-PHYSICS010308 nuclear & particles physicsCharge densityCharge (physics)Charged particleMass spectrumFísica nuclearHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsParticle Physics - Experiment
researchProduct

Measurement of the Z$^0$ branching fraction to b quark pairs using the boosted sphericity product

1992

Abstract From a sample of about 120 000 hadronic Z 0 decays, using a technique based on a separation of the different event categories in the boosted sphericity product, the fraction of b b decays has been measured to be 0.219 ± 0.014 (stat)± 0.019 (syst). Using the DELPHI determination of the hadronic Z 0 width, this corresponds to a partial width τ b b = 378 ± 42 MeV (in good agreement with the standard model prediction of ∼-380 MeV). Combining this measurement with the determinations based on events with high p t leptons gives an estimate for the branching ratio of b into leptons at LEP of (11.2 ± 1.2)%, consistent with previous determinations.

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesBottom quarkJET FRAGMENTATIONDECAYSStandard ModelSphericityNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyProduct (mathematics)Física nuclearHigh Energy Physics::ExperimentLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; PHYSICS; DECAYSParticle Physics - ExperimentLepton
researchProduct

Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

2017

A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…

ultra high energy cosmic rays cosmic ray experimentsPhoton[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyHadronFluxultra high energy cosmic rays; cosmic ray experiments7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)energy: thresholdCosmic ray experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsphoton: productionconstraint: energyCOSMIC-RAYSAugerobservatoryContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenalongitudinalAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayultra high energy cosmic raysdark matterUltra high energy cosmic rays Cosmic ray experiments Astronomy and Astrophysics.Nuclear physics[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesultra high energy cosmic rays; cosmic ray experiments; Astronomy and Astrophysicscosmic radiation: UHEHigh Energy PhysicsCiencias ExactasPierre Auger ObservatorySPECTRUMhybridbackgrounddetector: surface010308 nuclear & particles physicsFísicaUltra high energy cosmic raysAstronomy and AstrophysicsASTROFÍSICAULTRA-HIGH ENERGYfluxExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experimentshadron[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Measurement of the transverse spin correlation in Z → τ+ τ- decays

1997

The measurement of the correlation between the transverse spin components of tau(+)tau(-) pairs collected during 1992 to 1994 with the DELPHI detector at LEP1 is presented. A value C-TT = 0.87 +/- 0.20 (stat.)(-0.12)(+0.10) (syst.) was obtained for the correlation parameter, in agreement with the Standard Model expectation. (C) 1997 Published by Elsevier Science B.V.

QuarkNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationLEP-SLC ENERGIES01 natural sciencesPartícules (Física nuclear)JET FRAGMENTATIONStandard ModelNuclear physicsPHYSICS0103 physical sciencesRADIATIVE-CORRECTIONS010306 general physicsNuclear ExperimentDetectors de radiacióLUND MONTE-CARLO; LEP-SLC ENERGIES; RADIATIVE-CORRECTIONS; JET FRAGMENTATION; TAU-POLARIZATION; SIMULATION; PHYSICS; QUARKSpin-½DELPHIPhysics010308 nuclear & particles physicsTAU-POLARIZATIONQUARKCenter (category theory)LARGE ELECTRON POSITRON COLLIDERTransverse planePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHISIMULATIONPARTICLE PHYSICSHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics
researchProduct

Classification of the hadronic decays of the Z$^0$ into b and c quark pairs using a neural network

1992

A classifier based on a feed-forward neural network has been used for separating a sample of about 123 500 selected hadronic decays of the Z 0 , collected by DELPHI during 1991, into three classes according to the flavour of the original quark pair: u u +d d +s s (unresolved), c c and b b . The classification has been used to compute the partial widths of the Z 0 into b and c quark pairs. This gave Γ c c /Γ h = 0.151 ± 0.008 ( stat. ) ± 0.041 ( syst. ) , Γ b b /Γ h = 0.232±0.005 ( stat. )±0.017 ( syst. ) .

QuarkNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO; HEAVY FLAVOR PRODUCTION; JET FRAGMENTATION; PHYSICS; BOSONHEAVY FLAVOR PRODUCTIONLUND MONTE-CARLOElectron–positron annihilationFlavourHadronMathematicsofComputing_GENERALComputer Science::Digital Libraries01 natural sciencesJET FRAGMENTATIONCharm quarkPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsArtificial neural network010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTheoryofComputation_GENERALBOSONMathMLComputer Science::Mathematical SoftwareHigh Energy Physics::ExperimentFísica nuclearClassifier (UML)Particle Physics - Experiment
researchProduct

Experimental study of the triple-gluon vertex

1991

Abstract In four-jet events from e+e− →Z0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor Nc to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models…

Particle physicsCOLLISIONSNuclear and High Energy PhysicsE+E ANNIHILATION[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]LUND MONTE-CARLOElectron–positron annihilationHigh Energy Physics::LatticeNON-ABELIAN NATURE01 natural sciencesJET FRAGMENTATIONDECAYSPHYSICSAngular distribution3-GLUON VERTEX0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsLUND MONTE-CARLO; NON-ABELIAN NATURE; 4-JET EVENTS; JET FRAGMENTATION; E+E ANNIHILATION; 3-GLUON VERTEX; QCD; PHYSICS; COLLISIONS; DECAYSHigh Energy Physics::PhenomenologyCasimir elementQCDVertex (geometry)Gluon4-JET EVENTSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Limits on the production of scalar leptoquarks from $Z^0$ decays at LEP

1993

A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equ…

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationScalar (mathematics)Elementary particle01 natural sciencesJET FRAGMENTATIONNuclear physicsPHYSICSSEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PARTICLESLeptoquarkE+E COLLIDERSLimit (mathematics)LUND MONTE-CARLO; JET FRAGMENTATION; E+E COLLIDERS; SEARCH; SIGNATURES; PARTICLES; PHYSICS010306 general physicsSIGNATURESPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyYukawa potentialPair productionHigh Energy Physics::ExperimentFísica nuclearParticle Physics - Experiment
researchProduct

A Measurement of Sin2-theta-w From the Charge Asymmetry of Hadronic Events At the Z0 Peak

1992

Abstract View references (24)The weak mixing angle has been measured from the charge asymmetry of hadronic events with two different approaches using the DELPHI detector at LEP. Both methods are based on a momentum-weighted charge sum to determine the jet charge in both event hemispheres. In a data sample of 247 300 multihadronic Z0 decays a charge asymmetry of 〈QF〉 - 〈QB〉 = -0.0076±0.0012(stat.)±0.0005(exp. syst.)±0.0014(frag.) and a raw forward-backward asymmetry of Araw FB = -0.0109±0.0020(stat.)±0.0010(exp. syst.)±0.0017(frag.) have been measured. This result corresponds to a value of sinθeff=0.2345±0.0030(exp.)±0.0027(frag.) ,sin2θMS=0.2341±0.0030(exp.)±0. 0027(frag.) and to sin2θW=1-m…

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationmedia_common.quotation_subjectHadronJet (particle physics)collective information systems01 natural sciencesAsymmetryJET FRAGMENTATIONNuclear physicsPHYSICS0103 physical sciencespersonal information system[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LUND MONTE-CARLO; E+E ANNIHILATION; JET FRAGMENTATION; Z-DECAYS; PHYSICS010306 general physicsZ-DECAYSmedia_commonPhysicsRange (particle radiation)010308 nuclear & particles physicsWeinberg angleCharge (physics)information scienceQuadratic Gauss suminformation praticesPhysique des particules élémentairesHigh Energy Physics::ExperimentFísica nuclearParticle Physics - Experiment
researchProduct

A search for point sources of EeV photons

2014

Measurements of air showersmade using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from −85º to +20º, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of −2, is 0.06 eV cm−2 s−1, and no celestial direction exceeds 0.25 eV …

Astrofísica[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPoint sourcemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstronomyEnergy fluxFOS: Physical sciencesCosmic rayAstrophysics7. Clean energycosmic raysCiencias Exactasmedia_commonPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral index[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsRadiación cósmicamethods: data analysisGalaxy13. Climate actionSpace and Planetary ScienceSkyastroparticle physicsExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct

Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

2014

The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolAstronomyObservatoriesAerosol concentrationAir pollution010501 environmental sciencesAtmospheric sciencesmedicine.disease_causeAerosols Atmospheric aerosols Augers Cosmic rays Observatories; Aerosol concentration Aerosol optical depths Air mass Atmospheric effects GDAS HYSPLIT Pierre Auger observatory Ultra high-energy cosmic rays; Meteorology; aerosol property air mass concentration (composition) optical depth trajectory urban area urban atmosphere; Argentina01 natural sciencesoptical depthObservatory11. Sustainabilityddc:550MeteorologiaAugersmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsconcentration (composition)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]urban atmosphereAtmospheric effectsGDASAtmospheric aerosolscosmic ray; aerosol; air masses; atmospheric effectPhysics - Atmospheric and Oceanic PhysicstrajectoryClimatologyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHYSPLITAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPollutionaerosol property[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectatmospheric effectArgentinaFOS: Physical sciencesHYSPLITAtmósferaAtmosphereMeteorologycosmic raysmedicineAerosol optical depthsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasAir mass0105 earth and related environmental sciencesAerosols[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Pierre Auger ObservatoryFísicaASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Aerosol13. Climate actionExperimental High Energy PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)Pierre Auger observatoryAir massair massesUltra high-energy cosmic raysurban area
researchProduct

Reconstruction of inclined air showers detected with the Pierre Auger Observatory

2014

We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an…

AstrofísicaAstronomyCiencias Físicas01 natural sciencesultra high energy cosmic rayHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]ENERGYHigh Energy Physics - Experiment (hep-ex)EXPERIMENTS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HIGHPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryCascadeComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASNormalization (statistics)[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]COSMICAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesEnergy spectrum010306 general physicsULTRAZenithShower reconstructionPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Ultra-high energy cosmic raysRAYSComputational physicsAstronomíaInclined extensive air showersExperimental High Energy Physicscosmic ray experiments[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Energy (signal processing)Journal of Cosmology and Astroparticle Physics
researchProduct

Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

2016

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…

Physics - Instrumentation and DetectorsAutomatic dependent surveillance-broadcastComputer scienceCiencias FísicasAstronomyDetector alignment and calibration methods (lasers sources particle-beams)Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors01 natural sciencesTiming detectorsSynchronizationHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Sine wave[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsTransmitterDetectorSettore FIS/01 - Fisica Sperimentaleparticle-beams)Instrumentation and Detectors (physics.ins-det)Pattern recognition cluster finding calibration and fitting methodGlobal Positioning SystemComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCIENCIAS NATURALES Y EXACTASsourcesReal-time computingFOS: Physical sciencesCalibration and fitting methodClustersPattern recognition0103 physical sciencesCalibrationHigh Energy Physics010306 general physicsCiencias ExactasCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryCluster findingFísicaAstroparticles//purl.org/becyt/ford/1.3 [https]PhaserAstronomíaDetector alignment and calibration methods (lasersTiming detectorPierre AugerExperimental High Energy PhysicsRECONHECIMENTO DE PADRÕESCalibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors; Instrumentation; Mathematical PhysicsbusinessJournal of Instrumentation
researchProduct