Bi-objective Framework for Sensor Fusion in RGB-D Multi-View Systems: Applications in Calibration
Complete and textured 3D reconstruction of dynamic scenes has been facilitated by mapped RGB and depth information acquired by RGB-D cameras based multi-view systems. One of the most critical steps in such multi-view systems is to determine the relative poses of all cameras via a process known as extrinsic calibration. In this work, we propose a sensor fusion framework based on a weighted bi-objective optimization for refinement of extrinsic calibration tailored for RGB-D multi-view systems. The weighted bi-objective cost function, which makes use of 2D information from RGB images and 3D information from depth images, is analytically derived via the Maximum Likelihood (ML) method. The weigh…
Depth Enhancement by Fusion for Passive and Active Sensing
This paper presents a general refinement procedure that enhances any given depth map obtained by passive or active sensing. Given a depth map, either estimated by triangulation methods or directly provided by the sensing system, and its corresponding 2-D image, we correct the depth values by separately treating regions with undesired effects such as empty holes, texture copying or edge blurring due to homogeneous regions, occlusions, and shadowing. In this work, we use recent depth enhancement filters intended for Time-of-Flight cameras, and adapt them to alternative depth sensing modalities, both active using an RGB-D camera and passive using a dense stereo camera. To that end, we propose …
SHARP 2020: The 1st Shape Recovery from Partial Textured 3D Scans Challenge Results
The SHApe Recovery from Partial textured 3D scans challenge, SHARP 2020, is the first edition of a challenge fostering and benchmarking methods for recovering complete textured 3D scans from raw incomplete data. SHARP 2020 is organised as a workshop in conjunction with ECCV 2020. There are two complementary challenges, the first one on 3D human scans, and the second one on generic objects. Challenge 1 is further split into two tracks, focusing, first, on large body and clothing regions, and, second, on fine body details. A novel evaluation metric is proposed to quantify jointly the shape reconstruction, the texture reconstruction and the amount of completed data. Additionally, two unique da…