0000000000870832

AUTHOR

Yan Pan

0000-0002-6870-3015

A review of second‐order blind identification methods

Second order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly important as more and more high-dimensional multivariate time series data are measured in numerous fields of applied science. Dimension reduction is crucial, as modelling such high-dimensional data with multivariate time series models is often impractical as the number of parameters describing dependencies between the component time series is usually too high. SOS methods have their roots in the signal processing literature, where they were first used to separate source sig…

research product

A review of second‐order blind identification methods

Second-order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly important as more and more high-dimensional multivariate time series data are measured in numerous fields of applied science. Dimension reduction is crucial, as modeling such high-dimensional data with multivariate time series models is often impractical as the number of parameters describing dependencies between the component time series is usually too high. SOS methods have their roots in the signal processing literature, where they were first used to separate source sign…

research product