0000000000871189
AUTHOR
Chen Xu
Social Network-Based Content Delivery in Device-to-Device Underlay Cellular Networks Using Matching Theory
With the popularity of social network-based services, the unprecedented growth of mobile date traffic has brought a heavy burden on the traditional cellular networks. Device-to-device (D2D) communication, as a promising solution to overcome wireless spectrum crisis, can enable fast content delivery based on user activities in social networks. In this paper, we address the content delivery problem related to optimization of peer discovery and resource allocation by combining both the social and physical layer information in D2D underlay networks. The social relationship, which is modeled as the probability of selecting similar contents and estimated by using the Bayesian nonparametric models…
BEGIN: Big Data Enabled Energy-Efficient Vehicular Edge Computing
Vehicular edge computing is essential to support future emerging multimedia-rich and delay-sensitive applications in vehicular networks. However, the massive deployment of edge computing infrastructures induces new problems including energy consumption and carbon pollution. This motivates us to develop BEGIN (Big data enabled EnerGy-efficient vehIcular edge computiNg), a programmable, scalable, and flexible framework for integrating big data analytics with vehicular edge computing. In this article, we first present a comprehensive literature review. Then the overall design principle of BEGIN is described with an emphasis on computing domain and data domain convergence. In the next section, …
Stable-Matching-Based Energy-Efficient Context-Aware Resource Allocation for Ultra-Dense Small Cells
Implementing caching to ultra-densely deployed small cells provides a promising solution for satisfying the stringent quality of service (QoS) requirements of delay-sensitive applications with limited backhaul capacity. With the rapidly increasing energy consumption, in this chapter, the authors investigate the NP-hard energy-efficient context-aware resource allocation problem and formulate it as a one-to-one matching problem. The preference lists in the matching are modeled based on the optimum energy efficiency (EE) under specified matching, which can be obtained by using an iterative power allocation algorithm based on nonlinear fractional programming and Lagrange dual decomposition. Nex…