0000000000873328

AUTHOR

J. B. Mcclain

The morphology of block copolymer micelles in supercritical carbon dioxide by small-angle neutron and x-ray scattering

Above its critical point, carbon dioxide forms a super-critical fluid, which promises to be an environmentally responsible replacement for the organic solvents traditionally used in polymerizations. Many lipophilic polymers such as polystyrene (PS) are insoluble in CO2, though polymerizations may be accomplished via the use of PS-fluoropolymer stabilizers, which act as emulsifying agents. Small-angle neutron and X-ray scattering have been used to show that these molecules form micelles with a CO2-phobic PS core and a CO2-philic fluoropolymer corona. When the PS block was fixed in length and the fluorinated corona block was varied, the number of block copolymer molecules per micelle (six to …

research product

Critical micellisation density: a SAS structural study of the unimer–aggregate transition of block-copolymers in supercritical CO2

In this paper we report a SANS investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO2 (scCO2) at 313K. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of scCO2 by profiling pressure. At high pressure the copolymer is in a monomeric state with a random coil structure. By lowering the pressure aggregates are formed with the hydrocarbon segments forming the core and the fluorocarbon segments forming the corona of spherical aggregates. This aggregateunimer transition is driven by the gradual penetration of CO2 molecules toward the core of the aggregate and is critically related to the density of the solvent, …

research product