0000000000873417

AUTHOR

Klaus Metsch

showing 3 related works from this author

Embedding finite linear spaces in projective planes, II

1987

Abstract It is shown that a finite linear space with maximal point degree n + 1 can be embedded in a projective plane of order n, provided that the line sizes are big enough.

Discrete mathematicsLine at infinityFano planeTheoretical Computer ScienceCombinatoricsReal projective lineReal projective planeDuality (projective geometry)Finite geometryProjective spaceDiscrete Mathematics and CombinatoricsProjective planeComputer Science::DatabasesMathematicsDiscrete Mathematics
researchProduct

An optimal bound for embedding linear spaces into projective planes

1988

Abstract Linear spaces with υ >n 2 − 1 2 n + 1 points, b⩽n2 + n + 1 lines and not constant point degree are classified. It turns out that there is essentially one class of such linear spaces which are not near pencils and which can not be embedded into any projective plane of order n.

CombinatoricsBlocking setDuality (projective geometry)Discrete Mathematics and CombinatoricsProjective spaceEmbeddingProjective planeFano planeTheoretical Computer ScienceMathematicsDiscrete Mathematics
researchProduct

Embedding Locally Projective Planar Spaces Into Projective Spaces

1988

We shall show that a 3-dimensional locally projective planar space of finite order n can be embedded into a 3-dimensional projective space of order n, if it has at least n 3 points.

Discrete mathematicsPure mathematicsReal projective lineCollineationProjective unitary groupComplex projective spaceProjective spaceProjective planeQuaternionic projective spacePencil (mathematics)Mathematics
researchProduct