0000000000873725

AUTHOR

Jonathan Delcourt

showing 3 related works from this author

An evaluation framework and a benchmark for multi/hyperspectral image compression

2011

International audience; This paper benchmarks three multi/hyperspectral image compression approaches: the classic Multi-2D compression approach and two different implementations of 3D approach (Full 3D and Hybrid). All approaches are combined with a spectral PCA decorrelation stage to optimize performance. These three compression approaches are compared within a larger comparison framework than the conventionally used PSNR, which includes eight metrics divided into three families. The comparison is carried out with regard to variations in bitrates, spatial, and spectral dimensions variations of images. The time and memory consumption difference between the three approaches is also discussed…

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognition02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingcompressionwaveletsWavelet[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingCompression (functional analysis)Hyperspectral image compression0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinessDecorrelation[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingMulti/hyperspectral images021101 geological & geomatics engineeringImage compression
researchProduct

A Comparative Study and an Evaluation Framework of Multi/Hyperspectral Image Compression

2009

In this paper, we investigate different approaches for multi/hyperspectral image compression. In particular, we compare the classic multi-2D compression approach and two different implementations of 3D approach (full 3D and hybrid) with regards to variations in spatial and spectral dimensions. All approaches are combined with a weighted Principal Component Analysis (PCA) decorrelation stage to optimize performance. For consistent evaluation, we propose a larger comparison framework than the conventionally used PSNR, including eight metrics divided into three families. The results show the weaknesses and strengths of each approach.

Set partitioning in hierarchical treesWaveletPixelbusiness.industryPrincipal component analysisMultispectral imageWavelet transformHyperspectral imagingPattern recognitionArtificial intelligencebusinessDecorrelationMathematics2009 Fifth International Conference on Signal Image Technology and Internet Based Systems
researchProduct

Comparative study of multi-2D, Full 3D and hybrid strategies for multi/hyperspectral image compression

2009

In this paper, we investigate appropriate strategies for multi/hyperspectral image compression. In particular, we compare the classic multi-2D compression strategy and two different implementations of 3D strategies (Full 3D and hybrid). All strategies are combined with a PCA decorrelation stage to optimize performance. For multi-2D and hybrid strategies, we propose a weighted version of PCA. Finally, for consistent evaluation, we propose a larger comparison framework than the conventionally used PSNR. The results are significant and show the weaknesses and strengths of each strategy.

Image codingTexture compressionbusiness.industryCompression (functional analysis)Hyperspectral image compressionPrincipal component analysisPattern recognitionArtificial intelligencebusinessDecorrelationMathematicsData compression2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis
researchProduct