0000000000873789

AUTHOR

José Navarro-sánchez

showing 11 related works from this author

Peptide Metal–Organic Frameworks for Enantioselective Separation of Chiral Drugs

2017

We report the ability of a chiral Cu(II) 3D MOF based on the tripeptide Gly-L-His-Gly (GHG) for the enantioselective separation of metamphetamine and ephedrine. Monte Carlo simulations suggest that chiral recognition is linked to preferential binding of one of the enantiomers as result of either stronger or additional H-bonds with the framework that lead to energetically more stable diastereomeric adducts. Solid phase extraction (SPE) of a racemic mixture by using Cu(GHG) as extractive phase permits isolating more than 50% of the (+)-ephedrine enantiomer as target compound in only four minutes. To the best of our knowledge, this represents the first example of a MOF capable of separating ch…

StereoisomerismTripeptideMolecular Dynamics Simulation010402 general chemistry01 natural sciencesBiochemistryCatalysisMethamphetamineColloid and Surface ChemistryOrganic chemistryMoleculeMetal-Organic FrameworksEphedrineMolecular Structure010405 organic chemistryChemistryDiastereomerEnantioselective synthesisStereoisomerismQuímicaGeneral ChemistryCombinatorial chemistry0104 chemical sciences13. Climate actionRacemic mixtureMetal-organic frameworkPèptidsEnantiomerPeptidesMonte Carlo MethodCopperJournal of the American Chemical Society
researchProduct

Peptide metal-organic frameworks under pressure: flexible linkers for cooperative compression

2018

We investigate the structural response of a dense peptide metal-organic framework using in situ powder and single-crystal X-ray diffraction under high-pressures. Crystals of Zn(GlyTyr)2 show a reversible compression by 13% in volume at 4 GPa that is facilitated by the ability of the peptidic linker to act as a flexible string for a cooperative response of the structure to strain. This structural transformation is controlled by changes to the conformation of the peptide, which enables a bond rearrangement in the coordination sphere of the metal and changes to the strength and directionality of the supramolecular interactions specific to the side chain groups in the dipeptide sequence. Compar…

chemistry.chemical_classificationDipeptideCoordination sphereSupramolecular chemistryQuímica organometàl·licaPeptideSequence (biology)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundchemistrySide chainMetal-organic frameworkPèptids0210 nano-technologyLinker
researchProduct

Bottom‐Up Fabrication of Semiconductive Metal-Organic Framework Ultrathin Films

2018

Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self-assembled monolayer substrate modification and bottom-up techniques are used to produce preferentially oriented, ultrathin, con…

FabricationMaterials sciencebusiness.industryMechanical EngineeringQuímica organometàl·licaNanotechnologySelf-assembled monolayer02 engineering and technologyConductivitat elèctrica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallinitySemiconductorMechanics of MaterialsMonolayerGeneral Materials ScienceMetal-organic framework0210 nano-technologybusinessPorosityElectrical conductor
researchProduct

Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions

2019

Translocation of protease into mesoporous MIL-101-NH2 results in enhanced catalytic activity, excellent recyclability and tolerance to competing enzymes.

chemistry.chemical_classificationProtease010405 organic chemistrymedicine.medical_treatmenteducationfungiQuímica organometàl·licaGeneral Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistryhumanities0104 chemical sciencesEnzyme catalysisCatalysisChemistryEnzymechemistryBiocatalysismedicineBiocompositeMesoporous material
researchProduct

CCDC 1588161: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588164: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588162: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588165: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588166: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588163: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588160: Experimental Crystal Structure Determination

2018

Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D

Space GroupCrystallographycatena-(bis(mu-glycyl-L-tyrosinato)-zinc)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct