0000000000873900

AUTHOR

C. M. Lyneis

Electron cyclotron resonance ion source plasma chamber studies using a network analyzer as a loaded cavity probe

A method and first results utilizing a network analyzer as a loaded cavity probe to study the resonance properties of a plasma filled electron cyclotron resonance ion source (ECRIS) plasma chamber are presented. The loaded cavity measurements have been performed using a dual port technique, in which two separate waveguides were used simultaneously. One port was used to ignite and sustain the plasma with a microwave source operating around 11 GHz and the other was used to probe the cavity properties with the network analyzer using a frequency range around 14 GHz. The first results obtained with the JYFL 14 GHz ECRIS demonstrate that the presence of plasma has significant effects on the reson…

research product

Recent progress on the superconducting ion source VENUS.

The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi31+, which is in the intensity range of interest for hig…

research product