0000000000874342

AUTHOR

Michael E. Talkowski

showing 3 related works from this author

Disruption of the ASTN2 / TRIM32 locus at 9q33.1 is a risk factor in males for Autism Spectrum Disorders, ADHD and other neurodevelopmental phenotypes

2014

Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions o…

MaleReceptors Cell Surface/geneticsAutismChild Development Disorders Pervasive/geneticsGene ExpressionGenome-wide association studyMedical and Health SciencesTripartite Motif ProteinsRisk FactorsReceptors2.1 Biological and endogenous factorsProtein IsoformsNerve Tissue Proteins/geneticsCopy-number variationAetiologyChildGenetics (clinical)Sequence DeletionPediatricGenetics & HeredityGeneticseducation.field_of_studySingle NucleotideArticlesGeneral MedicineExonsBiological SciencesMental HealthPhenotypeAutism spectrum disorderOrgan SpecificityCerebellar cortexChild PreschoolCell SurfaceSpeech delayFemalemedicine.symptomTranscription Initiation SiteAttention Deficit Disorder with Hyperactivity/geneticsChromosomes Human Pair 9HumanPair 9AdultPediatric Research InitiativeChild Development DisordersAdolescentDNA Copy Number VariationsIntellectual and Developmental Disabilities (IDD)Ubiquitin-Protein LigasesPopulationTranscription Factors/geneticsNerve Tissue ProteinsReceptors Cell SurfaceBiologyPolymorphism Single NucleotideChromosomesYoung AdultClinical ResearchProtein Isoforms/geneticsBehavioral and Social ScienceGeneticsmedicineAttention deficit hyperactivity disorderHumansGenetic Predisposition to DiseasePolymorphismPreschooleducationMolecular BiologyGenetic Association StudiesPervasiveGlycoproteinsHuman GenomeNeurosciencesInfant NewbornGlycoproteins/geneticsInfantNewbornmedicine.diseaseBrain DisordersAttention Deficit Disorder with HyperactivityChild Development Disorders PervasiveCase-Control StudiesAutismTranscription Factors
researchProduct

Translocations Disrupting PHF21A in the Potocki-Shaffer-Syndrome Region Are Associated with Intellectual Disability and Craniofacial Anomalies

2012

Contains fulltext : 110038.pdf (Publisher’s version ) (Closed access) Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive. Through characterization of independent subjects with balanced translocations and supportive comparative deletion mapping of PSS subjects, we have uncovered evidence that t…

AdultMaleAdolescentGenotypePotocki–Shaffer syndromeChromosome DisordersHaploinsufficiencyBiologyHistone DeacetylasesSodium ChannelsTranslocation GeneticArticleChromatin remodelingCraniofacial Abnormalities03 medical and health sciencesSCN3A0302 clinical medicineIntellectual DisabilityNAV1.3 Voltage-Gated Sodium ChannelmedicineTranscriptional regulationGeneticsAnimalsHumansDeletion mappingGenetics(clinical)CraniofacialZebrafishGenetics (clinical)030304 developmental biologyGenetics0303 health sciencesChromosomes Human Pair 11Infant Newbornmedicine.diseaseGenetics and epigenetic pathways of disease DCN MP - Plasticity and memory [NCMLS 6]Child PreschoolHomeoboxFemaleChromosome DeletionHaploinsufficiencyExostoses Multiple Hereditary030217 neurology & neurosurgeryThe American Journal of Human Genetics
researchProduct

Computational Prediction of Position Effects of Apparently Balanced Human Chromosomal Rearrangements.

2017

Interpretation of variants of uncertain significance, especially chromosomal rearrangements in non-coding regions of the human genome, remains one of the biggest challenges in modern molecular diagnosis. To improve our understanding and interpretation of such variants, we used high-resolution three-dimensional chromosomal structural data and transcriptional regulatory information to predict position effects and their association with pathogenic phenotypes in 17 subjects with apparently balanced chromosomal abnormalities. We found that the rearrangements predict disruption of long-range chromatin interactions between several enhancers and genes whose annotated clinical features are strongly …

0301 basic medicineCandidate genediagnosis030105 genetics & heredityMedical and Health SciencescytogeneticsTranslocation Geneticchromosomal translocationChromosome Breakpointschromatin conformationbalanced chromosomal rearrangement2.1 Biological and endogenous factorsChromosomes HumanGenetics(clinical)AetiologyGenetics (clinical)In Situ HybridizationIn Situ Hybridization Fluorescencelong-range effectGeneticsGenetics & HeredityGene RearrangementGenomeChromosome MappingBiological SciencesChromatinPosition effectPhenotypeMedical geneticsHPOHumandistal effectmedicine.medical_specialtyChromosome engineeringchromosomal rearrangement/dk/atira/pure/subjectarea/asjc/1300/1311KaryotypeTranslocationChromosomal rearrangementBiologyChromosomesFluorescenceArticleChromosomal Position Effects03 medical and health sciencesGeneticClinical ResearchmedicineGeneticsHumansGenetic Predisposition to DiseaseGeneGenome HumanHuman GenomeGenetic Variation/dk/atira/pure/subjectarea/asjc/2700/2716030104 developmental biologyGene Expression RegulationHuman genomeclinical geneticsAmerican journal of human genetics
researchProduct