0000000000874489

AUTHOR

Sirja Viitamäki

showing 4 related works from this author

Additional file 2 of In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

2022

Additional file 2. Fig. S1. Physicochemical composition of tundra soils in Kilpisjärvi, northern Finland. Fig. S2. The microbial diversity of Kilpisjärvi soils as seen using a gene-centric approach. Fig. S3. Genome-resolved metagenomics of tundra soils. Fig. S4. Overview of the microbial diversity in Kilpisjärvi soils based on a genome-resolved approach. Fig. S5. Metabolic potential for denitrification in Stordalen Mire soils. Fig. S6. Phylogeny of a) nirK, b) nirS, c) norB, and d) nosZ sequences from metagenome-assembled genomes (MAGs) recovered from tundra soils in Kilpisjärvi, northern Finland.

researchProduct

In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

2022

Abstract Background In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. Results We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then sear…

tundraDenitrificationMicroorganismDenitrification pathwayBiomeDIVERSITYApplied Microbiology and BiotechnologyCARBONCHLOROFLEXIMULTIPLE SEQUENCE ALIGNMENTArctictyppitypen kiertoNITROUS-OXIDE REDUCTASEgenome-resolved metagenomics11832 Microbiology and virology2. Zero hungermaaperäarktinen alue0303 health sciencesdenitrificationnitrous oxideMICROBIAL COMMUNITYEcologygenomiikkadityppioksidinitraatitkasvihuonekaasutRIBOSOMAL-RNAdenitrifikaatioarctic regionN2O EMISSIONSBiologyMicrobiologyACIDOBACTERIAPERMAFROST03 medical and health sciencesDenitrifying bacteriasoil microbiomeGeneticsarcticGenome-resolved metagenomics030304 developmental biologymetagenomics030306 microbiology15. Life on landTundraekosysteemit (ekologia)mikrobisto13. Climate actionMetagenomicsSoil water
researchProduct

Data from: Black Queen evolution and trophic interactions determine plasmid survival after the disruption of conjugation network

2019

Mobile genetic elements such as conjugative plasmids are responsible for antibiotic resistant phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. race to the bottom) was a more significant factor over an…

medicine and health careMedicineblack queen evolutionLife sciencesconjugationTetrahymena thermophila
researchProduct

Additional file 1 of In-depth characterization of denitrifier communities across different soil ecosystems in the tundra

2022

Additional file 1. Table S1. Physicochemical information, sequencing statistics, and accession numbers for 69 soil metagenomes from Kilpisjärvi, northern Finland. Table S2. Information on 796 metagenome-assembled genomes (MAGs) recovered from tundra soils in Kilpisjärvi, northern Finland.

researchProduct