Bayesian joint ordinal and survival modeling for breast cancer risk assessment
We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportionalhazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the …