0000000000874556
AUTHOR
Hiroyasu Kawashima
Mid-infrared supercontinuum generation in suspended-core Chalcogenide and Tellurite optical fibers
We report the experimental generation of mid-infrared supercontinuum in tellurite and chalcogenide suspended-core fibers pumped close to their zero-dispersion in femtosecond regime. The resulting supercontinua extend until 2.8µm in tellurite and 3.2µm in chalcogenide fibers.
Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers
International audience; In this work, we report the experimental observation of supercontinua generation in two kinds of suspended-core microstructured soft-glass optical fibers. Low loss, highly nonlinear, tellurite and As2S3 chalcogenide fibers have been fabricated and pumped close to their zero-dispersion wavelength in the femtosecond regime by means of an optical parametric oscillator pumped by a Ti:Sapphire laser. When coupled into the fibers, the femtosecond pulses result in 2000-nm bandwidth supercontinua reaching the Mid-Infrared region and extending from 750 nm to 2.8 mu m in tellurite fibers and 1 mu m to 3.2 mu m in chalcogenide fibers, respectively.
Mid-infrared supercontinuum generation in suspended-core chalcogenide and tellurite optical fibers
Summary form only given. The generation of optical supercontinua in the mid-infrared region and especially their expansion beyond the intrinsic limit dictated by fused silica is currently a subject of high interest. Tellurite and chalcogenide glasses have serious advantages because of their wide transmittance window which can reach more than 10 μm while the Kerr nonlinearity can be 500 times stronger than fused silica. These different features make them serious candidates for broad mid-infrared supercontinuum generation. For example, supercontinuum as broad as 4000-nm bandwidth has been generated in a sub-cm long Tellurite microstructured fiber by Domachuk et al. in ref. [1] by means of a f…
Management of OH absorption in tellurite optical fibers and related supercontinuum generation
Abstract We report the fabrication and the characterization of low OH content and low loss tellurite optical fibers. The influence of different methods of glass fabrication on fiber losses has been investigated. The use of the purest commercial raw materials can reduce the losses below 0.1 dB/m at 1.55 μm. Incorporation of fluoride ions into the tellurite glass matrix makes the optical fibers transparent up to 4 μm. A suspended core microstructured fiber has been fabricated and pumped by nanojoule-level femtosecond pulses, thus resulting in more than 2000-nm bandwidth supercontinuum after a few centimeters of propagation.