Nondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage.
Extensive collagen cross-linking affects the mechanical competence of articular cartilage: it can make the cartilage stiffer and more brittle. The concentrations of the best known cross-links, pyridinoline and pentosidine, can be accurately determined by destructive high-performance liquid chromatography (HPLC). We explore a nondestructive evaluation of cross-linking by using the intrinsic fluorescence of the intact cartilage. Articular cartilage samples from bovine knee joints were incubated in threose solution for 40 and 100 h to increase the collagen cross-linking. Control samples without threose were also prepared. Excitation-emission matrices at wavelengths of 220 to 950 nm were acquir…
Diffusion of ionic and non-ionic contrast agents in articular cartilage with increased cross-linking--contribution of steric and electrostatic effects.
Abstract Objective To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. Design Osteochondral plugs (O=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed char…
Elevated Protein Content and Prolyl 4-Hydroxylase Activity in Severely Degenerated Human Annulus Fibrosus
Alterations involved with the intervertebral disc degeneration are partly well described, however, it is not so well known how collagen network is affected by the disease. We analyzed the rate of collagen biosynthesis (estimated by the enzymic activities of prolyl 4-hydroxylase and galactosylhydroxylysyl glucosyltransferase) and the level of hydroxylysylpyridinoline and lysylpyridinoline crosslinks both in normal (n=7) and degenerated (n=7) human annulus fibrosus. The activity of prolyl 4-hydroxylase was significantly increased in degenerated tissue. However, no significant changes in the collagen content or in the amount of hydroxylysylpyridinoline and lysylpyridinoline collagen crosslinks…
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples ( n = 27 ) were treated with threose to increase the collagen cross-linking whi…