0000000000876400

AUTHOR

H Souha

Enhancement of self-sustaining reaction Cu3Si phase formation starting from mechanically activated powders

Mechanical high-energy ball milling of an 3Cu Si elemental powders mixture was used to activate a self-sustaining combustion reaction or so-called self-sustaining high-temperature synthesis (SHS) to form the copper silicide phase, a reaction for which the thermodynamic criterion proposed by Munir for self-propagation reaction is not favorable. A complete characterization of the end-products was performed with X-ray diffraction analysis and scanning electron microscopy. Thermal and structural information describing the combustion front initiated by heating up a sample to 180°C in a Cu:Si system is communicated. This paper clearly shows that the mechanically activated self-sustaining high-tem…

research product

"Reactivity of Cu3Si of different genesis towards copper(I) chloride"

Abstract A comparative study of the reactivity between copper(I) chloride and three types of Cu 3 Si obtained in a molten medium (Cu 3 Si-Ref) and from mechanical activation following an annealing process (Cu 3 Si-M2AP) or a self-propagating high-temperature synthesis (Cu 3 Si-MASHS) was performed by thermogravimetry under vacuum using non-isothermal and isothermal methods of kinetic measurement. It was established that for the three Cu 3 Si/CuCl systems, the acceleration and decay stages in the temperature range 145–215°C are very closely approximated by an equation of the Prout–Tompkins type where an autocatalytic process was proposed. The lower apparent activation energy obtained for the…

research product