0000000000876509
AUTHOR
Tomi Ryynänen
Superconducting transition of single-crystal tin microstructures
Single-crystal superconducting microstructures have been fabricated. The resistances of tin whiskers were measured in a multiprobe configuration. Contacts were made of copper, gold, or niobium films using e-beam lithography followed by a lift-off process. Structures with normal metal probes showed unusual behavior: below the critical temperature of bulk tin, the resistance decreases in distinct steps and does not reach zero even when cooled down to 1 K. The origin of these phenomena is not clear but is likely related to a proximity effect.
Proximity-induced Josephson-quasiparticle process in a single-electron transistor
We have performed the first experiments in a superconductor - normal metal - superconductor single electron transistor in which there is an extra superconducting strip partially overlapping the normal metal island in good metal-to-metal contact. Superconducting proximity effect gives rise to current peaks at voltages below the quasiparticle threshold. We interpret these peaks in terms of the Josephson-quasiparticle process and discuss their connection with the proximity induced energy gap in the normal metal island.