0000000000876519

AUTHOR

Chungman Kim

Gradual phase transition from ferromagnetic tetragonal to antiferromagnetic cubic states in Mn Ga (1.80 ≤ x ≤ 3.03) thin films

Abstract The structural, magnetic, and electronic properties of MnxGa thin films are investigated as varying the Mn composition (1.80 ≤ x ≤ 3.03). The variation of x in MnxGa films dramatically changes the crystal structure as well as the magnetic properties. With increasing x, we observe the gradual phase transition from a ferromagnetic tetragonal state to an antiferromagnetic cubic state. The structural characterization reveals that the D022 tetragonal structure of Mn2Ga is slowly transformed to the L12 cubic structure of Mn3Ga. Two phases coexist around x = 2.4. The magnetization is systematically reduced as x increases, ending to an antiferromagnetic state of cubic Mn3Ga, and the electr…

research product

Highly Reduced Saturation Magnetization in Epitaxially Grown Ferrimagnetic Heusler Thin Films

The key of spintronic devices using the spin-transfer torque phenomenon is the effective reduction of switching current density by lowering the damping constant and the saturation magnetization while retaining strong perpendicular magnetic anisotropy. To reduce the saturation magnetization, particular conditions such as specific substitutions or buffer layers are required. Herein, we demonstrate highly reduced saturation magnetization in tetragonal D022 Mn3–xGa thin films prepared by rf magnetron sputtering, where the epitaxial growth is examined on various substrates without any buffer layer. As the lattice mismatch between the sample and the substrate decreases from LaAlO3 and (LaAlO3)0.3…

research product