Directed random walk on the backbone of an oriented percolation cluster
We consider a directed random walk on the backbone of the infinite cluster generated by supercritical oriented percolation, or equivalently the space-time embedding of the ``ancestral lineage'' of an individual in the stationary discrete-time contact process. We prove a law of large numbers and an annealed central limit theorem (i.e., averaged over the realisations of the cluster) using a regeneration approach. Furthermore, we obtain a quenched central limit theorem (i.e.\ for almost any realisation of the cluster) via an analysis of joint renewals of two independent walks on the same cluster.