0000000000877184

AUTHOR

Marc Beltrà

showing 2 related works from this author

Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations

2019

Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and m…

0301 basic medicineMaleCachexiamedicine.medical_treatmentPGC-1αMitochondrionliikuntaBiochemistryMice0302 clinical medicineNeoplasmsMitophagyautophagy; cancer cachexia; mitochondria; PGC-1α; survival; Biotechnology; Biochemistry; Molecular Biology; Geneticsta315WastingMice Inbred BALB C3. Good healthmitochondriaMuscular AtrophyFemalemedicine.symptomBiotechnologycancer cachexiamedicine.medical_specialtyautophagyAntineoplastic AgentsAnorexiasurvivalCachexia03 medical and health sciencesInternal medicinePhysical Conditioning AnimalGeneticsmedicineAnimalsMuscle SkeletalMolecular BiologyChemotherapysyöpähoidotbusiness.industryAutophagyCancermedicine.diseaseta3122030104 developmental biologyEndocrinologyQuality of Lifekoe-eläinmallitbusinessEnergy Metabolismlihassurkastumasairaudet030217 neurology & neurosurgeryFASEB Journal
researchProduct

NAD+ repletion with niacin counteracts cancer cachexia

2023

AbstractCachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and amel…

aineenvaihduntahäiriötMultidisciplinaryenergy metabolismcancerGeneral Physics and AstronomysyöpätauditGeneral Chemistrymetabolic diseasesaineenvaihduntaGeneral Biochemistry Genetics and Molecular Biology
researchProduct