0000000000877605

AUTHOR

Nadia Curetti

0000-0002-6300-7133

showing 2 related works from this author

Low-pressure ferroelastic phase transition in rutile-type AX2 minerals: cassiterite (SnO2), pyrolusite (MnO2) and sellaite (MgF2)

2019

The structural behaviour of cassiterite (SnO2), pyrolusite (MnO2) and sellaite (MgF2), i.e. AX2-minerals, has been investigated at room temperature by in situ high-pressure single-crystal diffraction, up to 14 GPa, using a diamond anvil cell. Such minerals undergo a ferroelastic phase transition, from rutile-like structure (SG: P42/mnm) to CaCl2-like structure (SG: Pnnm), at ≈ 10.25, 4.05 and 4.80 GPa, respectively. The structural evolution under pressure has been described by the trends of some structure parameters that are other than zero in the region of the low-symmetry phase’s stability. In particular, three tilting-angles (ω, ω′, ABS) and the metric distortion of the cation-centred oc…

DiffractionPhase transition010504 meteorology & atmospheric sciencesIonic bondingThermodynamicsengineering.material010502 geochemistry & geophysics01 natural scienceshigh-pressure diffraction ferroelastic phase transition cassiterite pyrolusite sellaiteGeochemistry and PetrologyCassiteriteGeneral Materials ScienceFerroelastic phase transition0105 earth and related environmental sciencesCassiterite; Ferroelastic phase transition; High-pressure diffraction; Pyrolusite; SellaitePyrolusiteSettore GEO/06 - MineralogiaChemistryCassiteriteSellaiteInfinitesimal strain theoryPyrolusiteOctahedronRutileengineeringHigh-pressure diffraction
researchProduct

Maximum entropy method : an unconventional approach to explore observables related to the electron density in phengites

2009

The maximum entropy method (MEM) is used here to get an insight into the electron density [rho(r)] of phengites 2M (1) and 3T, paying special attention to the M1-formally empty site and charge distribution. Room temperature single crystal X-ray diffraction data have been used as experimental input for MEM. The results obtained by MEM have been compared with those from conventional structure refinement which, in turn, has provided the prior-electron density to start the entropy maximization process. MEM reveals a comparatively non-committal approach, able to produce information related to the M1-site fractional occupancy, and yields results consistent with those from the difference Fourier s…

DiffractionElectron densityChemistryPhengites Electron density Maximum entropy methodCharge densityCharge (physics)phengites; electron density; maximum entropy methodMolecular physicsIonsymbols.namesakeCrystallographyFourier transformphengitesmaximum entropy methodGeochemistry and PetrologysymbolsGeneral Materials ScienceEntropy maximizationelectron densitySingle crystal
researchProduct