0000000000877904
AUTHOR
A. Hautojärvi
Submillisecond On-Line Mass Separation of Nonvolatile Radioactive Elements: An Application of Charge Exchange and Thermalization Processes of Primary Recoil Ions in Helium
Transportation of thermalized primary recoil ions from nuclear reactions by helium flow has been investigated as a means of injecting short-lived radioactive nuclides into an on-line isotope separator. Several short-lived radioactive isotopes of highly nonvolatile elements such as B, Sc, Nb, and W have been separated. The efficiency for heavy nuclides with half-lives above 1 ms is between 1 and 10%. The shortest-lived activity identified in an on-line separation is the 182-\ensuremath{\mu}s isomeric state in $^{207}\mathrm{Bi}$.
A study of a helium-jet ion guide for an on-line isotope separator
Abstract A new method based on helium-jet techniques permits primary recoil ions, produced in radioactive decay or in nuclear reactions to be run directly through a mass separator. Results obtained with a 227 Ac source promise qualities complementary with those obtained with conventional ion sources and indicate an overall efficiency of the order of 10%. Preliminary results with 20 Na recoils from the 20 Ne(p,n)-reaction indicate that most of the ionic species transported out from the target chamber are negatively charged.
Beta decay of 40Sc to proton and alpha-particle unbound states in 40Ca
Delayed charged particle emission associated with the precursor nuclide 40Sc was studied by use of the He-jet technique. Altogether 40 proton groups (1.0 MeV < Ep < 3.7 MeV) and 21 α-particle groups (2.0 MeV < Eα < 4.6 MeV) were observed. Total proton and α-particle branching ratios were measured to be (4.4±0.7) × 10−3 and (0.17±0.05) × 10−3, respectively. Association of the delayed particle emitting levels with the levels observed in resonance reaction studies is discussed. The fact that the most prominent α-particle groups do not have a counterpart in resonance reaction data suggests collectivity or a cluster configuration for the emitting levels. Log ft values (upper limits) for β+ trans…