0000000000877943

AUTHOR

Giona Matasci

Learning the relevant image features with multiple kernels

This paper proposes to learn the relevant features of remote sensing images for automatic spatio-spectral classification with the automatic optimization of multiple kernels. The method consists of building dedicated kernels for different sets of bands, contextual or textural features. The optimal linear combination of kernels is optimized through gradient descent on the support vector machine (SVM) objective function. Since a na¨ive implementation is computationally demanding, we propose an efficient model selection procedure based on kernel alignment. The result is a weight — learned from the data — for each kernel where both relevant and meaningless image features emerge after training. E…

research product

Domain separation for efficient adaptive active learning

This paper proposes a procedure aimed at efficiently adapting a classifier trained on a source image to a similar target image. The adaptation is carried out through active queries in the target domain following a strategy particularly designed for the case where class distributions have shifted between the two images. We first suggest a pre-selection of candidate pixels issued from the target image by keeping only those samples appearing to be lying in a region of the input space not yet covered by the existing ground truth (source domain pixels). Then, exploiting a classifier integrating instance weights, active queries are performed on the target image. As the inclusion to the training s…

research product