Quantum order by disorder in the Kitaev model on a triangular lattice
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanned by decoupled Ising-type chains, and its accidental degeneracy is due to the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave theory. We find that quantum fluctuations couple next-n…
Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice
We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.