0000000000878671
AUTHOR
Christophe Andrieu
QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
We provide explicit expressions for the constants involved in the characterisation of ergodicity of subgeometric Markov chains. The constants are determined in terms of those appearing in the assumed drift and one-step minorisation conditions. The results are fundamental for the study of some algorithms where uniform bounds for these constants are needed for a family of Markov kernels. Our results accommodate also some classes of inhomogeneous chains.
Establishing some order amongst exact approximations of MCMCs
Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …
On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic
We develop a practical approach to establish the stability, that is, the recurrence in a given set, of a large class of controlled Markov chains. These processes arise in various areas of applied science and encompass important numerical methods. We show in particular how individual Lyapunov functions and associated drift conditions for the parametrized family of Markov transition probabilities and the parameter update can be combined to form Lyapunov functions for the joint process, leading to the proof of the desired stability property. Of particular interest is the fact that the approach applies even in situations where the two components of the process present a time-scale separation, w…
Theoretical and methodological aspects of MCMC computations with noisy likelihoods
Approximate Bayesian computation (ABC) [11, 42] is a popular method for Bayesian inference involving an intractable, or expensive to evaluate, likelihood function but where simulation from the model is easy. The method consists of defining an alternative likelihood function which is also in general intractable but naturally lends itself to pseudo-marginal computations [5], hence making the approach of practical interest. The aim of this chapter is to show the connections of ABC Markov chain Monte Carlo with pseudo-marginal algorithms, review their existing theoretical results, and discuss how these can inform practice and hopefully lead to fruitful methodological developments. peerReviewed
Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…