0000000000878733

AUTHOR

Roberto Corsini

showing 8 related works from this author

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs

2018

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceta114010308 nuclear & particles physicselectronsElectron linacElectronhiukkaskiihdyttimetelektronitparticle accelerators01 natural sciencesLinear particle acceleratorNuclear physicsNuclear interactionradiation physicsCross section (physics)säteilyfysiikkaNuclear Energy and Engineering0103 physical sciencesElectrical and Electronic EngineeringEvent (particle physics)IEEE Transactions on Nuclear Science
researchProduct

Mechanisms of Electron-Induced Single-Event Latchup

2019

In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.

Nuclear and High Energy PhysicsWork (thermodynamics)Materials scienceSiliconchemistry.chemical_elementLinear energy transferContext (language use)Electronhiukkaskiihdyttimetelektronit01 natural sciencesradiation physics0103 physical sciencesElectronicsStatic random-access memoryDetectors and Experimental TechniquesElectrical and Electronic EngineeringRadiation hardeningta114010308 nuclear & particles physicsbusiness.industryelectronsparticle acceleratorssäteilyfysiikkaNuclear Energy and EngineeringchemistryOptoelectronicsbusinessIEEE Transactions on Nuclear Science
researchProduct

High-Energy Electron-Induced SEUs and Jovian Environment Impact

2017

We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiat…

Nuclear and High Energy Physics02 engineering and technologyRadiationspace technologyelektronit01 natural sciencesUpsetJovianNuclear physicsJupitersymbols.namesakeradiation physics0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringavaruustekniikkaPhysicsSpacecraftta114010308 nuclear & particles physicsbusiness.industryionising radiationionisoiva säteilyelectrons020202 computer hardware & architectureNuclear Energy and EngineeringsäteilyfysiikkaSingle event upsetVan Allen radiation beltPhysics::Space PhysicsElectromagnetic shieldingsymbolsAstrophysics::Earth and Planetary AstrophysicsAtomic physicsbusinessIEEE Transactions on Nuclear Science
researchProduct

SEU characterization of commercial and custom-designed SRAMs based on 90 nm technology and below

2020

International audience; The R2E project at CERN has tested a few commercial SRAMs and a custom-designed SRAM, whose data are complementary to various scientific publications. The experimental data include low- and high-energy protons, heavy ions, thermal, intermediate- and high-energy neutrons, high-energy electrons and high-energy pions.

high-energy protonsCOTS[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]käyttömuistitNuclear TheoryElectronHardware_PERFORMANCEANDRELIABILITY01 natural sciences7. Clean energyIonelektroniikkakomponentitNuclear physicsCross section (physics)Pion0103 physical sciencesNeutronionisoimaton säteilyStatic random-access memory010306 general physicsheavy ionsNuclear Experimentlow-energy protonsPhysicsLarge Hadron Collidercross section010308 nuclear & particles physicsionisoiva säteilyelectronsneutronsmuistit (tietotekniikka)SRAMCharacterization (materials science)säteilyfysiikkapionsSEU
researchProduct

Analysis of the Photoneutron Field Near the THz Dump of the CLEAR Accelerator at CERN With SEU Measurements and Simulations

2022

We study the radiation environment near the terahertz (THz) dump of the CERN Linear Electron Accelerator for Research (CLEAR) electron accelerator at CERN, using FLUktuierende KAskade in German (FLUKA) simulations and single-event upset (SEU) measurements taken with 32-Mbit Integrated Silicon Solution Inc. (ISSI) static random access memories (SRAMs). The main focus is on the characterization of the neutron field to evaluate its suitability for radiation tests of electronics in comparison with other irradiation facilities. Neutrons at CLEAR are produced via photonuclear reactions, mostly initiated by photons from the electromagnetic cascades that occur when the beam is absorbed by the dump …

Nuclear and High Energy Physicsphotonuclear reactionsSEUsfotonitacceleratorCLEARelectronsneutronsneutronitsäteilylaitteethiukkaskiihdyttimetAccelerators and Storage RingsNuclear Energy and EngineeringsäteilyfysiikkaCERNPhysics::Accelerator PhysicsphotonsR2ESRAMsElectrical and Electronic Engineeringradiation testing
researchProduct

Mono-energetic electron induced single-event effects at the VESPER facility

2016

We present experimental evidence of electron induced upsets in a reference ESA SEU monitor, the SEU based particle detector, induced by 200 MeV electron beam at the VESPER facility at CERN. Comparison of experimental cross sections and simulated cross sections are shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. Insight is given as to possible overall electron contribution to the upset rates in the Jovian radiation environment inside a typical spacecraft shielding are evaluated.

PhysicsLarge Hadron Collider010308 nuclear & particles physicsElectronRadiation01 natural sciencesUpsetParticle detectorNuclear physics0103 physical sciencesElectromagnetic shieldingCathode rayNeutron010306 general physics2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS)
researchProduct

Mechanisms of Electron-Induced Single Event Upsets in Medical and Experimental Linacs

2018

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

radiation physicssäteilyfysiikkaelectronshiukkaskiihdyttimetelektronitparticle accelerators
researchProduct

Mechanisms of Electron-Induced Single Event Latchup

2019

In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed. peerReviewed

radiation physicssäteilyfysiikkaelectronshiukkaskiihdyttimetelektronitparticle accelerators
researchProduct