0000000000880363

AUTHOR

Sami Guembour

0000-0001-5204-2374

showing 1 related works from this author

A Sentiment Enhanced Deep Collaborative Filtering Recommender System

2021

Recommender systems use advanced analytic and learning techniques to select relevant information from massive data and inform users’ smart decision-making on their daily needs. Numerous works exploiting user’s sentiments on products to enhance recommendations have been introduced. However, there has been relatively less work exploring higher-order user-item features interactions for sentiment enhanced recommender system. In this paper, a novel Sentiment Enhanced Deep Collaborative Filtering Recommender System (SE-DCF) is developed. The architecture is based on a Neural Attention network component aggregated with the output predictions of a Convolution Neural Network (CNN) recommender. Speci…

business.industryComputer scienceRecommender systemMachine learningcomputer.software_genreConvolutional neural networkAttention networkComponent (UML)Collaborative filteringArtificial intelligenceArchitecturebusinesscomputerRelevant informationMutual influence
researchProduct