0000000000880460
AUTHOR
Jorge Ares
Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators
Off-the-shelf spatial light modulators (SLMs), like twisted nematic liquid crystal displays (TNLCDs) used in projection systems, show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four-level codification scheme. Wavefront estimation is performed through conventional Hartmann–Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0. 76 μm and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. The…
Reconfigurable Shack-Hartmann sensor without moving elements.
We demonstrate wavefront sensing with variable measurement sensitivity and dynamic range by means of a programmable microlens array implemented onto an off-the-shelf twisted nematic liquid crystal display operating as a phase-only spatial light modulator. Electronic control of the optical power of a liquid lens inserted at the aperture stop of a telecentric relay system allows sensing reconfigurability without moving components. Results of laboratory experiments show the ability of the setup to detect both smooth and highly aberrated wavefronts with adequate sensitivity.