Boundary modulus of continuity and quasiconformal mappings
Let D be a bounded domain in R n , n ‚ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that jf(x) i f(y)j • !(jx i yj) for all x and y in @D, where ! is a non-negative non-decreasing function satisfying !(2t) • 2!(t) for t ‚ 0. We prove, with an additional growth condition on !, that jf(x) i f(y)jC maxf!(jx i yj);jx i yj fi g