0000000000881655
AUTHOR
Salvatore Catanese
Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia
Compared to other types of social networks, criminal networks present hard challenges, due to their strong resilience to disruption, which poses severe hurdles to law-enforcement agencies. Herein, we borrow methods and tools from Social Network Analysis to (i) unveil the structure of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently disrupt them. Mafia networks have peculiar features, due to the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations. Analysts are also faced with the difficulty in collecting reliable datasets that accurately describe the…
Social Network Analysis of Sicilian Mafia Interconnections
In this paper, we focus on the study of Sicilian Mafia organizations through Social Network Analysis. We analyse datasets reflecting two different Mafia Families, based on examinations of digital trails and judicial documents, respectively. The first dataset includes the phone calls logs among suspected individuals. The second one is based on police traces of meeting that have taken place among different types of criminals. Our breakthrough is twofold. First in the method followed to generate these new datasets. Second, in the method used to carry out a quantitative phenomena investigation that are hard to evaluate. Our networks are weighted ones, with each weight catching the frequency of …
Robust link prediction in criminal networks: A case study of the Sicilian Mafia
Abstract Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such as criminal networks. Also, the link prediction effectiveness may vary across different relations within a social group. We address these issues by assessing the performance of different link prediction algorithms on a mafia organization. The analysis relies on an original dataset manually extracted from the judicial documents of operation “Montagna”, conducted by the Italian law enforcement agencies against individuals affiliated with the Sicilian Mafia. To run our analysis, we extracted two networks: one including meetings and one recording telephone calls among suspects, respect…
Multilayer Network Analysis: The Identification of Key Actors in a Sicilian Mafia Operation
Recently, Social Network Analysis studies have led to an improvement and to a generalization of existing tools to networks with multiple subsystems and layers of connectivity. These kind of networks are usually called multilayer networks. Multilayer networks in which each layer shares at least one node with some other layer in the network are called multiplex networks. Being a multiplex network does not require all nodes to exist on every layer. In this paper, we built a criminal multiplex network which concerns an anti-mafia operation called “Montagna” and it is based on the examination of a pre-trial detention order issued on March 14, 2007 by the judge for preliminary investigations of t…
The Whole Is Greater than the Sum of the Parts: A Multilayer Approach on Criminal Networks
Traditional social network analysis can be generalized to model some networked systems by multilayer structures where the individual nodes develop relationships in multiple layers. A multilayer network is called multiplex if each layer shares at least one node with some other layer. In this paper, we built a unique criminal multiplex network from the pre-trial detention order by the Preliminary Investigation Judge of the Court of Messina (Sicily) issued at the end of the Montagna anti-mafia operation in 2007. Montagna focused on two families who infiltrated several economic activities through a cartel of entrepreneurs close to the Sicilian Mafia. Our network possesses three layers which sha…