Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment
The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation character…
Transient drift‐diffusion simulation of the open circuit voltage decay in ionic perovskite solar cells
Assigning ionic properties in perovskite solar cells; a unifying transient simulation/experimental study
Kinetic modelling has proven to be essential to understand the time and spatial dependence of charge carriers in solar cells. Traditional drift–diffusion simulations have generally been employed to describe static steady-state conditions, whereas recently the transient counterpart has been able to reveal more detailed information regarding carrier kinetics. In addition to customary electron and hole dynamics, perovskite materials are known to also be strongly affected by the displacement of lattice vacancies, charged atoms or even entire molecules. Such ionic motion transpires on vastly different time scales compared to free charges and are generally not straightforward to simultaneously ac…