Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration
We present a simple physical model to estimate the blocked pore probability of an ion channel that can be blocked by a highly charged drug in solution. The model is inspired by recent experimental work on the blocking of the ${\mathrm{PA}}_{63}$ channel, involved in the anthrax toxin infection, by a highly charged drug [Karginov et al. PNAS 102, 15075 (2005)]. The drug binding to the pore is highly specific but the strong dependence of blocking on the applied voltage and electrolyte concentration suggests that long range electrostatic interactions are important. Since basic electrostatic concepts rather than detailed molecular models are considered, the microscopic details of the channel bl…
Gibbs' Dividing Surface between a Fixed-Charge Membrane and an Electrolyte Solution. Application to Electrokinetic Phenomena in Charged Pores
The Gibbs model for the boundary between two phases consists of replacing the finite interfacial region, where the properties of the system change gradually, by a dividing surface which acts as a third phase of zero volume in which some magnitudes change abruptly. This thermodynamic concept was recently applied to a planar interface between a fixed charge membrane and an electrolyte solution.1 The continuous decrease of counterions with the distance from the charged surface is replaced by a step function, so that the diffuse double layer is ideally represented by a charged region depleted of all co-ions. Here the cylindrical geometry is analyzed, and the planar case is revisited by proposin…