0000000000882229

AUTHOR

Gamze Ates

0000-0002-9323-3465

showing 2 related works from this author

Oxytosis/Ferroptosis—(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System

2018

Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about wheth…

0301 basic medicineProgrammed cell deathCell typebrain diseasesCentral nervous systemReviewoxytosisBiologymedicine.disease_causelcsh:RC321-57103 medical and health sciencesironmedicineoxidative stresslcsh:Neurosciences. Biological psychiatry. Neuropsychiatryprogrammed cell deathchemistry.chemical_classificationReactive oxygen speciesGeneral NeuroscienceFerroptosisBrain Diseases ; Ferroptosis ; Iron ; Oxidative Stress ; Oxytosis ; Programmed Cell Deathferroptosis030104 developmental biologymedicine.anatomical_structurechemistryApoptotic cell deathNeuroscienceCalcium influxOxidative stressNeuroscienceFrontiers in Neuroscience
researchProduct

Testing chemical carcinogenicity by using a transcriptomics HepaRG-based model?

2014

The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcinogen- specific gene signatures. Here the performance of its gene classifier, derived from exposure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the gene and the pathway level by using independent biostatistical approaches showed a distinct separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 88 % correct prediction). The most characteristic pathway responding to …

genotoxic carcinogensHepaRG cell linenon-genotoxic carcinogenspathways-based analysisliver-based in vitro modelsgene expression profiling610Original Articleinfo:eu-repo/classification/ddc/610
researchProduct