0000000000885045

AUTHOR

Henning Tjaden

Real-Time Monocular Pose Estimation of 3D Objects Using Temporally Consistent Local Color Histograms

We present a novel approach to 6DOF pose estimation and segmentation of rigid 3D objects using a single monocular RGB camera based on temporally consistent, local color histograms. We show that this approach outperforms previous methods in cases of cluttered backgrounds, heterogenous objects, and occlusions. The proposed histograms can be used as statistical object descriptors within a template matching strategy for pose recovery after temporary tracking loss e.g. caused by massive occlusion or if the object leaves the camera’s field of view. The descriptors can be trained online within a couple of seconds moving a handheld object in front of a camera. During the training stage, our approac…

research product

Real-Time Monocular Segmentation and Pose Tracking of Multiple Objects

We present a real-time system capable of segmenting multiple 3D objects and tracking their pose using a single RGB camera, based on prior shape knowledge. The proposed method uses twist-coordinates for pose parametrization and a pixel-wise second-order optimization approach which lead to major improvements in terms of tracking robustness, especially in cases of fast motion and scale changes, compared to previous region-based approaches. Our implementation runs at about 50–100 Hz on a commodity laptop when tracking a single object without relying on GPGPU computations. We compare our method to the current state of the art in various experiments involving challenging motion sequences and diff…

research product

Projection-based improvement of 3D reconstructions from motion-impaired dental cone beam CT data.

Purpose Computed tomography (CT) and, in particular, cone beam CT (CBCT) have been increasingly used as a diagnostic tool in recent years. Patient motion during acquisition is common in CBCT due to long scan times. This results in degraded image quality and may potentially increase the number of retakes. Our aim was to develop a marker-free iterative motion correction algorithm that works on the projection images and is suitable for local tomography. Methods We present an iterative motion correction algorithm that allows the patient's motion to be detected and taken into account during reconstruction. The core of our method is a fast GPU-accelerated three-dimensional reconstruction algorith…

research product

A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking

We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, it is the first to address the common and…

research product

High-Speed and Robust Monocular Tracking

In this paper, we present a system for high-speed robust monocular tracking (HSRM-Tracking) of active markers. The proposed algorithm robustly and accurately tracks multiple markers at full framerate of current high-speed cameras. For this, we have developed a novel, nearly co-planar marker pattern that can be identified without initialization or incremental tracking. The pattern also encodes a unique ID to identify different markers. The individual markers are calibrated semi-automatically, thus no time-consuming and error-prone manual measurement is needed. Finally we show that the minimal spatial structure of the marker can be used to robustly avoid pose ambiguities even at large distanc…

research product